XXVII, № 11, 1974

УЛК 547.854.1

производные пиримидина

XL. 5-АЛКОКСИБЕНЗИЛ-6-ЭТОКСИМЕТИЛПИРИМИДИНЫ

л. А. григорян, м. А. калдрикян и А. А. АРОЯН

Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР, Ереван Поступило 31 VII 1973

Взаимодействием у-этоксивцетоуксусного эфира с л-алкоксибензилхлоридами получены с. (л-алкоксибензил)-у-этоксивцетоуксусные эфиры, циклизацией которых с тиомочевниой, гидрохлоридом гуанидина синтезированы 2-меркапто- и 2-амино-4-окси-5-(л-алкоксибензил)-6-этоксиметилпиримидины. Окислением перекисью водорода 2-меркаптопроивзодные превращены в 2,4-диоксипиримидины.

Табл. 4, библ. ссылок 6.

Известно, что пиримидины с различными функциональными группами представляют интерес с точки зрения противоопухолевой активности [1—3]. Ранее нами сообщалось [4] о синтезе некоторых 5- (п-алкоксибензил) пиримидинов, содержащих алкоксильную группу в положениях 4 или 6. В развитие этих работ представлялось интересным выяснить влияние удаления алкоксильного радикала в положении 6 от пиримидинового кольца метиленовой группой. С этой целью нами синтезированы пиримидины III—V по схеме

$$C_{2}H_{3}OCH_{2}COCC_{2}H_{3} \xrightarrow{CICH_{3}C_{3}H_{3}OR-n} C_{2}H_{3}OCH_{2}COCHCOOC_{2}H_{3}$$

$$I \qquad \qquad CH_{2}C_{6}H_{4}OR-n$$

$$I \qquad \qquad III$$

Экспериментальная часть

ү-Этоксиацетоуксусные эфиры (1) получены конденсацией этилового эфира этоксиуксусной кислоты [5] с этилацетатом [6].

а-(n-Алкоксибензил)-ү-этоксиацетоуксусные эфиры (11). Смесь 34 г (0,2 моля) ү-этоксиацетоуксусного эфира, 0,2 моля n-алкоксибензилхлорида и этилата натрия, приготовленного из 4,6 г (0,2 г-ат) натрия и 150 мл безводного спирта, напревалась на водяной бане 6—7 час. Спирг отгонялся, остаток после прибавления 120 мл воды экстрагировался эфиром, эфирный слой высушивался над безводным сернокислым натрием и перегонялся (табл. 1).

Tab.inga 1

0/	Т. кип., °С/1 мм	u ^D	d ²⁰			н з, ⁰ / ₈		
Выход, о				найдено	вычис-	пайдепо	вычис-	
45,0	185—186	1,0877	1,4971	65,61	65,28	7,81	7,53	
51,3	190-191	1,4950	1,0656	66,02	66,21	7,78	7,84	
45,6	200—201	1,0422	1,4838	67,30	67,05	8,30	8,12	
44,1	196—197	1,4913	1,0518	66,89	67,05	7,89	8,12	
47,6	208—209	1,0415	1,4892	68,17	67,83	8,70	8,39	
50.5	205—206	1,0313	1,4848	68,10	67.83	8,37	8,39	
	45,0 51,3 45,6 44,1 47,6	45.0 185—186 51,3 190—191 45.6 200—201 44.1 196—197 47,6 208—209	45.0 185—186 1.0877 51,3 190—191 1.4950 45.6 200—201 1.0422 44.1 196—197 1.4913 47.6 208—209 1.0415	45.0 185—186 1.0877 1.4971 51,3 190—191 1.4950 1.0656 45.6 200—201 1.0422 1.4838 44.1 196—197 1.4913 1.0518 47.6 208—209 1.0415 1.4892	T, KHII., °C/1 MM nD d20 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	T, KHIL, °C/1 MM	T, KHII., °C/1 MM	

2-Меркапто-4-окси-5-(п-алкоксибензил)-6-этоксиметилпиримидины (III). К этилату натрия, притотовленному из 2,3 г (0,1 г-ат) натрия и 150 мл безводного опирта, прибавлялось 0,1 моля II и 7,6 г (0,1 моля) тиомочевины. После нагревания смеси в течение 8 час. отгонялся спирт, остаток после прибавления 150 мл воды экстрагировался эфиром. Водный слой подкислялся 10% соляной кислотой. Образовавшиеся кристаллы отфильтровывались, промывались безводным эфиром и перекристаллизовывались из 50% спирта (табл. 2).

2-Амико-4-окси-5-(п-алкоксибензил)-6-этоксиметиллиримидины (IV). Смесь 0,01 моля II, 0,9 г (0,01 моля) гидрохлорида гуанидина и этилата натрия, приготовленного из 0,46 г (0,02 г-ат) натрия и 60 мл безводного спирта, нагревалась при перемешивании 6 час. Спирт отгонялся, остаток после прибавления 100 мл воды подкислялся уксусной кислотой. Кристаллы отфильтровывались и перекристаллизовывались из смеси диметилформамида с водой (2:1) (табл. 3).

Таббица 2

			Анализ, ⁰ /а					
	%			N'	S			
R	Выход,	т. пл., °С	เเลนิสตา	вычис-	пайдено	BIAVIIC- ACHO		
CH ₃	54,0	148149	9,34	9,11	10,69	10,46		
C ₂ H ₅	52,4	150-151	8,47	8,74	10,27	10,00		
C ₃ H ₇	58,8	152—153	8,07	8,37	9,25	9,58		
изо-С ₃ Н ₇	60,0	153 154	8,00	8,37	9,39	9,58		
C ₄ H ₉	60,8	145146	8.24	8,04	9,02	9,20		
1190-C4H9	61,7	154—155	8,33	8,04	8,96	9,20		

Таблица 3

	BIAXOA, 0,0	Т. пл., °C	А нализ. 0/0						
			N		С		Н		
R			เเอเ๊дено	вычис-	เเลมีภูยเก	вычис-	пайдено	вычис-	
CH ₃	64,1	278—279	14,55	14,52	62,29	62,26	6,65	6,62	
C ₂ H ₅	53,4	291—292	13,51	13,85	63,61	63,34	7,29	6,97	
C ₃ H ₇	56,3	276-277	12,91	13,24	64,69	64,33	6,93	7,30	
изо-С ₃ Н ₇	61.8	277—278	13, 15	13,24	64,60	64,33	7,20	7,30	
C ₄ H ₉	52,5	280281	13,00	12,68	64,94	65,23	7,50	7,60	
изо-С ₄ Н ₉	56,0	284—285	12,60	12,68	65,06	65,23	7,48	7,60	

2,4-Диокси-5-(п-алкоксибензил)-6-этоксиметилпиримидины (V). К раствору 0,005 моля III в 3,3 мл 4 н едкого натра при перемешивании прикапывалось 2 мл 30% перекиси водорода в 2 мл воды. Смесь напревалась на водяной бане 10 мин. Нерастворимая часть отфильтровывалась и фильтрат подкислялся уксусной кислотой. Кристаллы промывались водой и перекристаллизовывались из смеси вода-диметилформамид (1:2) (табл. 4).

Таблица 4

11 2 2		Т. пл., °С	Анализ, 6/0						
R	0/0		N		С		Н		
	Выход		найдено	BLIG-	найдено	BM4IIC-	найдено	вычис-	
CH ₃	93,0	196—197	9,49	9,65	61,89	62,05	5,91	6,25	
C ₂ H ₅	97,8	218-219	8,92	9,20	62,82	63,14	6,35	6,62	
C ₃ H ₇	94,4	210-211	8,47	8,80	63,84	64,13	6,80	6.96	
изо-С ₃ Н ₇	96,7	207—208	8,50	8,80	64.35	64,13	6,91	6,96	
C ₄ H ₉	92,8	194—195	8,38	8,42	64,87	65,04	7,07	7,27	
<i>изо-</i> С ₄ Н ₉	97,2	212—213	8,59	8,42	64,76	65,04	7,00	7,27	
	1		1	1			1		

ՊԻՐԻՄԻԴԻՆԻ ԱԾԱՆՑՑԱԼՆԵՐ

XL. 5-ԱԼԿՕՔՍԻԲԵՆԶԻԼ-8-ԷԹՕՔՍԻՄԵԹԻԼՊԻՐԻՄԻԴԻՆՆԵՐ

Էթօքսիացետոքացախաթթվական էսթերի և պ-ալկօքսիբենզիլքլորիդի փոխազդեցությունից ստացված α-(պ-ալկօքսիբենզիլ)-γ-էթօքսիացետոքա-ցախաթթվի էսթերները (II) թիոմիզանյութի կամ գուանիդինի հիդրոքլորի-դի հետ ենթարկվում են ցիկլացման, առաջացնելով համապատասխան պիրի-միդիններ III, IV: III պիրիմիդինները օքսիդացված են 2,4-դիօքսիածանցյալ-ների։

PYRIMIDINE DERIVATIVES

XL. THE 5-ALKOXYBENZYL-6-ETHOXYMETHYLPYRIMIDINES

L. A. GRIGORIAN, M. A. KALDRIKIAN and H. A. HAROYAN

The synthesis of new pyrimidines derivatives which are pharmacologically important is described. α -(p-Alkoxybenzyl)- γ -ethoxy esters are prepared by the reaction of γ -ethoxyacetoacetate with a p-alkoxybenzylhalide in the presence of sodium ethoxide. Condensation of the esters with thiourea and guanidine hydrochloride produces the corresponding pyrimidines.

ЛИТЕРАТУРА

- 1. Z. Budésinsky, F. Roubinek, E. Svåtek, Coll., 30, 3730 (1965).
- 2. R. J. Rutman, A. Cantarow, K. E. Paschkis, Cancer Res., 14, 119 (1954).
- 3. C. Heldelberger, K. C. Lelbman, E. Harbers, P. M. Bhargava, Cancer Res., 17, 399 (1957).
- 4. А. А. Ароян, М. А. Калдрикян, Л. А. Григорян, Арм. хим. ж., 22, 341, 401 (1969); 23, 462 (1969).
- 5. А. Е. Арбуѕов, Г. Камий, ЖОХ, 17, 2149 (1947).
- 6. C. Plantadosl, V. G. Skrulason, J. L. Irvin, J. M. Powell, J. Med. chem., 7, 337 (1964).