XXVI, № 8, 1973

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 541.123.6+541.8+546.32+546.33

РАСТВОРИМОСТЬ ВО ВЗАИМНОЙ СИСТЕМЕ Na⁺, K⁺/SiO₃, PO₄'''—H₂O ПРИ 20°C

м. г. манвелян, в. д. галстян, э. а. саямян, а. п. гюнашян и э. б. оганесян

Институт общей и неорганической химии АН Армянской ССР (Ереван)
Поступило 8 XII 1972

Изучена растворимость во взаимной четверной системе $Na_3SiO_3-K_2SiO_3-Na_3PO_4-K_3PO_4-H_2O$ при 20° .

Установлено, что в системе происходит выделение следующих твердых фаз: $Na_3SiO_3 \cdot 9H_2O$; $Na_3PO_4 \cdot 12H_2O$; $Na_3PO_4 \cdot 8H_2O$; $K_3PO_4 \cdot 7H_2O$, образованных между $Na_3PO_4 \cdot 12H_2O$ и $K_3PO_4 \cdot 7H_2O$; между $Na_2SiO_3 \cdot 9H_2O$ и $Na_3PO_4 \cdot 12H_2O$ выделена область совместной кристаллизации.

Проведены кристаялооптическое и термографическое исследования выделенных осадков.

Изучение указанной системы явилось следствием исследованных нами ранее трехкомпонентных систем $Na_2SiO_3-K_2SiO_3-H_2O$; $Na_2SiO_3-Na_3PO_4-H_2O$; $Na_3PO_4-H_2O$; $Na_3PO_4-H_2O$; $Na_3PO_4-H_3O$; $Na_3PO_$

Рис. 3, табл. 1, библ. ссылок 5.

Известно, что из щелочно-кремнеземистых растворов, получающихся при комплексной переработке нефелиновых сиенитов, получается ряд ценных материалов, применяемых в различных отраслях промышленности, в частности, в текстильной, а также в быту, в медицине и т. д. [3— 5]. Причем, к ним, в качестве активных добавок, прибавляют фосфаты, полифосфаты и т. д.

С этой точки зрения для выяснения поведения отдельных составляющих раствора и возможного взаимодействия их между собою нами. проведено исследование четверной системы

 $Na_2SiO_3-K_2SiO_2-Na_2PO_4-K_3PO_4-H_2O$ по обменной реакции

$$3Na_{2}SiO_{3} + 2K_{2}PO_{4} = 2Na_{2}PO_{4} + 3K_{2}SiO_{3}$$

методом нонвариантных точек, полученных при исследовании соответствующих тройных систем: $Na_2SiO_3-Na_3PO_4-H_2O$; $Na_3PO_4-K_3PO_$

Для опытов готовился насыщенный раствор, соответствующий переходной точке тройной системы (на стороне квадрата), и добавлялась.

третья соль взаимной пары. В другом случае были приготовлены насыщенные растворы трех соединений из четырех возможных, причем отношение двух из них принималось за постоянную, и к ним была прибавлена третья соль взаимной пары. Например, взято: $Na_2SiO_3/K_3PO_4=9:1+Na_3PO_4$ до 100. В результате получены тройные точки и определены поля кристаллизации исходных компонентов, а также вновь образованных твердых фаз.

Таблица

№ осал- ка	Состав твердых фаз	Состав фильтратов, нон °/о			
		Na ⁺	K+/	SIO ₃	PO4"
1	Na ₃ PO ₄ ·12H ₂ O + T ₂	100,0	_	75,45	24,55
2	Na ₂ SiO ₃ ·9H ₂ O + T ₂	100,0	_	89,57	10,43
3	$Na_2SiO_3 \cdot 9H_2O + Na_3PO_4 \cdot 8H_2O + T_2$	74,25	25,75	93,56	6,44
4	$Na_3PO_4 \cdot 12H_2O + Na_3PO_4 \cdot 8H_2O + T_2$	62,28	37,72	73,30	27,70
5	Na ₃ PO ₄ ·12H ₂ O + Na ₃ PO ₄ ·8H ₂ O + T ₁	36,46	63,54	22,38	77,62
6	$Na_3PO_4 - 8H_2O + T_1 + K_3PO_4 - 7H_2O$	15,00	85,00	40,20	59,20
7	Na ₃ PO ₄ ·12H ₂ O + T ₁	41,40	58,60		100,0
8	$K_3PO_4.7H_2O + T_1$	13,08	86,92	_	100,0
9	Na ₂ SiO ₃ ·9H ₂ O + Na ₃ PO ₄ ·12H ₂ O	93.80	6,05	95,02	4,82
10	Na ₂ SiO ₃ -9H ₂ O + Na ₂ PO ₄ -12H ₃ O	89,42	10,50	95,42	4,58
11	Na ₃ PO ₄ ·12H ₂ O + Na ₃ PO ₅ ·8H ₂ O	37,88	62,12	31,08	68,90
12	K ₃ PO ₁ ·7H ₂ O	6,55	93,45	55,00	45,00

Полученные аналитические данные и пересчет на солевой состав и состав в ионных процентах сведены в таблицу. На их основе построена диаграмма по методу Иенеке (рис. 1).

Таким образом удалось установить поля кристаллизации следующих соединений: Na₂SiO₃·9H₃O (I); Na₃PO₄·12H₂O (II); Na₃PO₄·8H₂O (IV), K₃PO₄·7H₂O (VI), а также твердых растворов, образованных между Na₃PO₄·12H₂O и K₃PO₄·7H₂O (III) — T_1 , и поле совместной кристаллизации Na₂SiO₃·9H₂O + Na₃PO₄·12H₂O (V) — T_2 .

Поля кристаллизации ограничены моновариантными линиями совместной кристаллизации: поле $Na_2SiO_3\cdot 9H_2O$ (I) — $Na_2SiO_3\cdot 9H_2O$ и T_2 (от т. 2 до т. 10); $Na_3PO_4\cdot 12H_2O$ (II) — ветвью $Na_3PO_4\cdot 12H_2O$ и T_2 (от 1 до 31); далее от т. 31 до т. 24 — $Na_3PO_4\cdot 12H_2O$ и $Na_3PO_4\cdot 8H_2O$; от 24 до 22 — ветвью совместной кристаллизации $Na_3PO_4\cdot 12H_2O$ и T_1 .

Поле твердых растворов (T_1) ограничено, с одной стороны, ветвью совместной кристаллизации Na₃PO₄·12H₂O + T_1 (от 24 до 22), с другой, $T_1 + K_3PO_4 \cdot 7H_2O$ (от 21 до 19) и $T_1 + Na_3PO_4 \cdot 8H_2O$ (от 24 до 19). Поле Na₃PO₄·8H₂O (IV) — ветвями совместной кристаллизации Na₃PO₄·12H₂O и Na₃PO₄·8H₂O (от 31 до 24), Na₃PO₄·8H₂O и K₂SiO₃ (от 10 до 19), Na₃PO₄·8H₂O + T_1 (от 24 до 19) и, наконец, Na₃PO₄·

 $\cdot 8 \rm H_2O + T_2$ (от 10 до 31). Поле совместной кристаллизации Na₂SiO₃ $\cdot 9 \rm H_2O$ и Na₃PO₄ $\cdot 12 \rm H_2O$ (V) + T_2 ограничено линией совместной кристаллизации Na₂SiO₃ $\cdot 9 \rm H_2O$ + T_2 (от 2 до 10), T_2 + Na₃PO₄ $\cdot 8 \rm H_2O$ (от 10 до 31) и Na₃PO₄ $\cdot 12 \rm H_2O$ + T_2 (от 31 до 1).

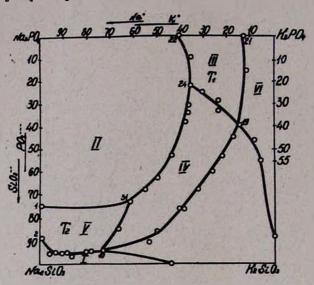


Рис. 1. Диаграмма растворимости системы Na₂SiO₃— Na₃PO₄—K₂SiO₃—K₃PO₄—H₂O при 20°C.

Поле кристаллизации $K_3PO_4 \cdot 7H_2O$ ограничено ветвью совместной кристаллизации $K_3PO_4 \cdot 7H_2O + T_1$ и $K_3PO_4 \cdot 7H_2O$ и K_2SiO_3 (от 19 до 38).

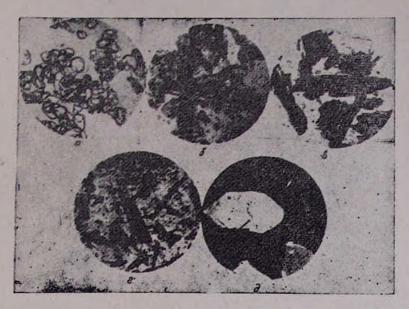
K₂SiO₃ в системе не удается осадить, поэтому не наблюдалось ограниченного поля, соответствующего этому соединению.

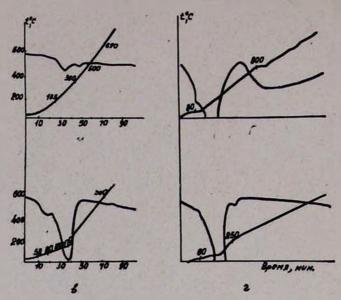
Таким образом, диаграмма растворимости четверной взаимной системы $Na_2SiO_3-K_2SiO_3-Na_3PO_4-K_3PO_4-H_2O$ имеет шесть полей кристаллизации, ограниченных восемью линиями одновременной кристаллизации двух соединений, по четыре эвтонические точки совместной кристаллизации трех и двух соединений.

Ниже приведены следующие составы эвтонических точек совместной кристаллизации: Na₃PO₄·12H₂O+ T_2 ; Na₂SiO₃·9H₂O+ T_2 ; Na₂SiO₃·9H₂O+Na₃PO₄·8H₂O+ T_2 ; Na₃PO₄·12H₃O+Na₃PO₄·8H₂O+ T_2 ; Na₃PO₄·12H₂O+Na₃PO₄·7H₂O; Na₃PO₄·12H₂O+ T_1 ; K₃PO₄·7H₂O+ T_1 ; K₃PO₄·7H₂O+ T_1 .

Твердые фазы из всех областей кристализации были подвергнуты кристаллоптическому и термографическому исследованиям, которые показали, что оптические характеристики кристаллогидратов $Na_2SiO_3 \cdot 9H_2O$; $Na_3PO_4 \cdot 12H_2O$; $K_3PO_4 \cdot 7H_2O$ и $Na_3PO_4 \cdot 8H_2O$ согласуются с литературными данными и равны соответственно: $Na_2SiO_3 \cdot 9H_2O$ $N_g = 1,460$, $N_p = 1,45$, ромбические кристаллы, т. пл. 38° ; $Na_3PO_4 \cdot 12H_2O$ $N_g = 1,445$, $N_p = 1,422$, кристаллы удлиненно призматические, гексагональная сингония, т. пл. $70--75^\circ$; $Na_3PO_4 \cdot 8H_2O$ $N_g = 1,463$, $N_p 1,450$, призматиче-

ские кристаллы с пирамидальным концом, наложены друг на друга, волокнистого моноклинического строения, т. пл. 86° , твердый раствор, образованный между $Na_3PO_4 \cdot 12H_2O$ и $K_3PO_4 \cdot 7H_3O$, $N_g = 1,38$, $N_p = 1,34$.




Рис. 2. Микрофотограмма осадков из области а и 6 совместной кристаллизации $Na_2SiO_3 \cdot 9H_2O$ и $Na_3PO_4 \cdot 12H_2O$; в совместной кристаллизации $Na_3PO_4 \cdot 12H_2O + T_1$ (эвтоническая точка); г— $Na_3PO_4 \cdot 8H_2O$; д— $K_3PO_4 \cdot 7H_3O$.

На рис. 2 даны микрофотограммы осадков 9, 10, 5, 11, 12 (табл.). Составы твердых фаз устанавливались химическим анализом центрифугированных осадков и подтверждались кристаллооптически. Как видим, на микрофотограммах отчетливо наблюдаются кристаллы, свойственные указанным областям кристаллизации.

Сняты кривые нагревания твердых фаз, подтверждающие данные химического анализа и кристаллооптики.

На рис. 3 приведены термограммы $Na_3PO_4\cdot 12H_2O$; $Na_3PO_4\cdot 8H_2O$ и $K_3PO_4\cdot 7H_2O$, предварительно высушенных при температуре до 120°, а также твердого раствора, образованного между $Na_3PO_4\cdot 12H_2O$ и $K_3PO_4\cdot 7H_2O$. Индивидуальность выделенных соединений подтверждается термограммами.

Следует отметить, что наибольшую часть квадрата Иенеке занимает поле кристаллизации $Na_3PO_4\cdot 12H_2O$, составляя 43,22% общей площади. Поле гидрометасиликата натрия составляет 3,4%, что указывает на его большую растворимость. Твердые фазы, выделенные в системе, соответственно занимают: поле твердых растворов III—6,8%, $Na_3PO_4\cdot 8H_2O$ IV— $14,4^0/_0$, $Na_2SiO_3\cdot 9H_2O$ + $Na_3PO_4\cdot 12H_2O$ V— $5,08^0/_0$ и $K_2PO_4\cdot 7H_2O$ — $7,62^0/_0$ всей площади диаграммы.

PHC. 3. Tepmorpanma: $a = K_3PO_4 \cdot 7H_2O$; $6 = Na_3PO_4 \cdot 8H_2O$; $B = Na_3PO_4 \cdot 12H_2O + K_3PO_4 \cdot 7H_3O$; $r = Na_3PO_4 \cdot 12H_2O$.

20°C-በኮሆ Na^+ , K^+/SiO_3^* , $PO_4^{\prime\prime\prime}$ — H_2O ՓበኤԱԴԱՐՁ ሀኮሀՏԵՄԻ ԼՈՒՄԵԼԻՈՒԹՑՈՒՆԸ

Մ. Գ. ՄԱՆՎԵԼՏԱՆ, Վ. Դ. ԳԱԼՍՏՏԱՆ, Է. Ա. ՍԱՏԱՄՏԱՆ, Ա. Պ. ԳՏՈՒՆԱՇՑԱՆ և Է. Բ. ՀՈՎՀԱՆՆԻՍՅԱՆ

Ուսումնասիրված է լուծելիու \mathcal{P} լունը Na₂SiO₃—K₂SiO₃—Na₃PO₄— K₂PO₄— H₂O քառակոմպոնենտ փոխադարձ սիստեմում 20°C-ում ։

Հաստատված է, որ սիստեմում առաջանում են հետևլալ պինդ ֆազերը՝ $Na_2S1O_3 \cdot 9H_2O$; $Na_3PO_4 \cdot 12H_2O$; $Na_3PO_4 \cdot 8H_2O$, $K_3PO_4 \cdot 7H_2O$, պինդ լուժուլթներ՝ $Na_3PO_4 \cdot 12H_2O$ և $K_3PO_4 \cdot 7H_2O$ -ի միջև և վերջապես, անջատվել է համատեղ բլուրեղացման մարզ՝ $Na_2S1O_3 \cdot 9H_2O$ և $Na_3PO_4 \cdot 12H_2O$ -ի միջև։

Կատարված են անջատված նստվածքների բյուրեղաօպտիկական և թերմոգրաֆիական ուսումնասիրություններ։

SOLUBILITY DIAGRAM OF THE Na⁺, K⁺/SiO₃—PO₄"—H₂O QUATERNARY SYSTEM AT 20°C

M. G. MANVELIAN, V. D. GALSTIAN, E. A. SAYAMIAN, A. P. GYUNASHIAN and E. B. HOVHANISSIAN

The solubility diagram of the system $Na_2SiO_3-K_2SiO_3-Na_3PO_4-K_2PO_4-H_2O$ has been studied at 20°C. It is found that $Na_2SiO_3\cdot 9H_2O$; $Na_3PO_4\cdot 12H_2O$ solid phases and $Na_3PO_4\cdot 8H_2O$, $K_3PO_4\cdot 7H_2O$ solid solutions are separated. Crystallooptical and thermographical studies of the products have been performed.

ЛИТЕРАГУРА

- 1. М. Г. Манвелян, Г. Г. Бабаян, Э. А. Саямян, С. С. Восканян, Изв. АН Арм. ССР, ХН, № 2, 95 (1959).
- 2. Г. Г. Бабаян, Э. А. Саямян, Г. М. Дарбинян, Арм. хим. ж., 28, 986 (1970).
- 3. М. Г. Манвелян, Г. Г. Бабаян, Э. А. Саямян, Э. Б. Оганесян, Ав. св. 1116283/23—5, 1968
- 4. Ф. Н. Неволин, В. Г. Барылник, Т. Г. Типисова, А. Н. Семенова, Изобретения, промышленные образцы, товарные знаки, № 7, 79 (1967).
- 5. E. King, J. Biochem., 67, 990 (1933).