2ЦЗЧЦЧЦЪ ₽РГРЦЧЦЪ ЦГИЦЧРР АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXVI, № 8, 1973

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 541.123.6+541.8+546.32+546.33

РАСТВОРИМОСТЬ ВО ВЗАИМНОЙ СИСТЕМЕ Na⁺, K⁺/SiO^{*}, PO^{''}₄—H₂O ПРИ 20°C

м. г. манвелян, в. д. галстян, э. а. саямян, а. п. гюнашян в Э. Б. оганесян

Институт общей и неорганической химин АН Армянской ССР (Ереван)

Поступило 8 XII 1972

Изучена растворимость во взаимной четверной системе Na₃SiO₃—K₃SiO₃— Na₃PO₄—K₃PO₄—H₂O при 20°.

Установлено, что в системе происходит выделение следующих твердых фаз: Na₃SIO₃·9H₃O; Na₃PO₄·12H₂O; Na₃PO₄·8H₃O; K₃PO₄·7H₂O, образованных между Na₃PO₄·12H₂O и K₃PO₄·7H₂O; между Na₂SIO₃·9H₂O и Na₃PO₄·12H₂O выделена область совместной кристаллизации.

Проведены кристаллооптическое и термографическое исследования выделенных осадков.

Изучение указанной системы явилось следствием исследованных нами ранее трехкомпонентных систем Na₂SiO₃—K₂SiO₃—H₂O; Na₂SiO₃—Na₂PO₄—H₂O; Na₃PO₄— K₃PO₄—H₃O; K₃PO₄—K₂SiO₃—H₂O [1, 2].

Рис. З, табл. 1, библ. ссылок 5.

Известно, что из щелочно-кремнеземистых растворов, получающихся при комплексной переработке нефелиновых сиенитов, получается ряд ценных материалов, применяемых в различных отраслях промышленности, в частности, в текстильной, а также в быту, в медицине и т. д. [3— 5]. Причем, к ним, в качестве активных добавок, прибавляют фосфаты, полифосфаты и т. д.

С этой точки зрения для выяснения поведения отдельных составляющих раствора и возможного взаимодействия их между собою нами. проведено исследование четверной системы

Na2SiO3-K2SiO3-Na2PO4-K3PO4-H2O по обменной реакции

$$3Na_{2}SiO_{4} + 2K_{2}PO_{4} = 2Na_{2}PO_{4} + 3K_{2}SiO_{4}$$

методом нонвариантных точек, полученных при исследовании соответствующих тройных систем: $Na_2SiO_3 - Na_3PO_4 - H_2O$; $Na_3PO_4 - K_3PO_4 - K_3PO_4 - H_3O$; $K_3PO_4 - K_2SiO_3 - H_2O$ и $Na_2SiO_3 - K_2SiO_3 - H_2O$.

Для опытов готовился насыщенный раствор, соответствующий переходной точке тройной системы (на стороне квадрата), и добавлялась. третья соль взаимной пары. В другом случае были приготовлены насыщенные растворы трех соединений из четырех возможных, причем отношение двух из них принималось за постоянную, и к ним была прибавлена третья соль взаимной пары. Например, взято: Na₂SiO₃/K₃PO₄ =9:1+Na₃PO₄ до 100. В результате получены тройные точки и определены поля кристаллизации исходных компонентов, а также вновь образованных твердых фаз.

					Таблица
Xe ocar- ka	Состав твердых фаз	Состав фильтратов, нон %			
		Na ⁺	K+/	SIO3	PO4"
I	$Na_3PO_4 \cdot 12H_2O + T_2$	100.0	-	75,45	24,55
2	$Na_2SIO_3 \cdot 9H_2O + T_3$	100,0	-	89,57	10,43
3	$Na_{3}SIO_{3} \cdot 9H_{2}O + Na_{3}PO_{4} \cdot 8H_{2}O + T_{2}$	74,25	25,75	93,56	6,44
4	$Na_3PO_4 \cdot 12H_2O + Na_3PO_4 \cdot 8H_2O + T_2$	62,28	37,72	73,30	27,70
5	$Na_{3}PO_{4} \cdot 12H_{3}O + Na_{3}PO_{4} \cdot 8H_{2}O + T_{1}$	36,46	63,54	22,38	77,62
6	$Na_{3}PO_{4} \cdot 8H_{2}O + T_{1} + K_{3}PO_{4} \cdot 7H_{2}O$	15,00	85,00	40,20	59,20
7	$Na_3PO_4 \cdot 12H_2O + T_1$	41,40	58,60	-	100,0
8	$K_3PO_4.7H_2O + T_1$	13,08	86,92	_	100,0
9	$Na_2SiO_3 \cdot 9H_2O + Na_3PO_4 \cdot 12H_2O$	93,80	6,05	95,02	4,82
10	$Na_2SIO_3 \cdot 9H_2O + Na_2PO_4 \cdot 12H_3O$	89,42	10,50	95,42	4,58
11	$Na_3PO_4 \cdot 12H_2O + Na_3PO_5 \cdot 8H_2O$	37,88	62,12	31,08	68,90
12	K ₃ PO ₁ ·7H ₃ O	6,55	93,45	55,00	45,00

Полученные аналитические данные и пересчет на солевой состав и состав в ионных процентах сведены в таблицу. На их основе построена диаграмма по методу Иенеке (рис. 1).

Таким образом удалось установить поля кристаллизации следующих соединений: Na₂SiO₃·9H₂O (I); Na₃PO₄·12H₂O (II); Na₃PO₄·8H₂O (IV), K₃PO₄·7H₂O (VI), а также твердых растворов, образованных между Na₂PO₄·12H₂O и K₃PO₄·7H₂O (III) — T_1 , и поле совместной кристаллизации Na₂SiO₃·9H₂O + Na₃PO₄·12H₂O (V) - T_2 .

Поля кристаллизации ограничены моновариантными линиями совместной кристаллизации: поле $Na_2SiO_3 \cdot 9H_2O$ (I) — $Na_2SiO_3 \cdot 9H_2O$ и T_2 (от т. 2 до т. 10); $Na_3PO_4 \cdot 12H_2O$ (II) — ветвью $Na_3PO_4 \cdot 12H_2O$ и T_2 (от 1 до 31); далее от т. 31 до т. 24 — $Na_3PO_4 \cdot 12H_2O$ и $Na_3PO_4 \cdot 8H_2O$; от 24 до 22 — ветвью совместной кристаллизации $Na_3PO_4 \cdot 12H_2O$ и T_1 .

Поле твердых растворов (T_1) ограничено, с одной стороны, ветвью совместной кристаллизации Na₃PO₄·12H₂O + T_1 (от 24 до 22), с другой, $T_1 + K_3PO_4 \cdot 7H_2O$ (от 21 до 19) и $T_1 + Na_3PO_4 \cdot 8H_2O$ (от 24 до 19). Поле Na₃PO₄·8H₂O (IV) — ветвями совместной кристаллизации Na₃PO₄·12H₂O и Na₃PO₄·8H₂O (от 31 до 24), Na₃PO₄·8H₂O и K₂SiO₃ (от 10 до 19), Na₃PO₄·8H₂O + T_1 (от 24 до 19) и, наконец, Na₃PO₄·

Армянский химический журнал, XXVI, 8-2

 $\cdot 8H_{2}O + T_{2}$ (от 10 до 31). Поле совместной кристаллизации Na₂SiO₃ $\cdot 9H_{2}O$ и Na₃PO₄ $\cdot 12H_{2}O$ (V) + T_{2} ограничено линией совместной кристаллизации Na₂SiO₃ $\cdot 9H_{2}O + T_{2}$ (от 2 до 10), $T_{2} + Na_{3}PO_{4}\cdot 8H_{2}O$ (от 10 до 31) и Na₃PO₄ $\cdot 12H_{2}O + T_{2}$ (от 31 до 1).

Рис. 1. Диаграмма растворимости системы Na₃SiO₃— Na₃PO₄—K₂SiO₃—K₃PO₄—H₂O при 20°С.

Поле кристаллизации $K_3PO_4 \cdot 7H_sO$ ограничено ветвью совместной кристаллизации $K_3PO_4 \cdot 7H_sO + 7_1$ и $K_3PO_4 \cdot 7H_sO$ и K_sSiO_3 (от 19 до 38).

K₂SiO₃ в системе не удается осадить, поэтому не наблюдалось ограниченного поля, соответствующего этому соединению.

Таким образом, диаграмма растворимости четверной взаимной системы Na₃SiO₃—K₂SiO₃—Na₃PO₄—K₃PO₄—H₂O имеет шесть полей кристаллизации, ограниченных восемью линиями одновременной кристаллизации двух соединений, по четыре эвтонические точки совместной кристаллизации трех и двух соединений.

Ниже приведены следующие составы эвтонических точек совместной кристаллизации: Na₃PO₄·12H₉O+T₂; Na₂SiO₃·9H₂O+T₂; Na₂SiO₃· ·9H₂O+Na₃PO₄·8H₂O+T₃; Na₃PO₄·12H₃O+Na₃PO₄·8H₂O+T₂; Na₃PO₄· ·12H₂O+Na₃PO₄·8H₂O+T₁; Na₃PO₄·8H₂O+T₁+K₃PO₄·7H₂O; Na₃PO₄· ·12H₂O+T₁; K₃PO₄·7H₂O+T₁.

Твердые фазы из всех областей кристализации были подвергнуты кристаллоптическому и термографическому исследованиям, которые показали, что оптические характеристики кристаллогидратов Na₂SiO₃· ·9H₃O; Na₃PO₄·12H₂O; K₃PO₄·7H₈O и Na₃PO₄·8H₂O согласуются с литературными данными и равны соответственно: Na₂SiO₃·9H₂O $N_g = 1,460$, $N_p = 1,45$, ромбические кристаллы, т. пл. 38°; Na₃PO₄·12H₂O $N_g = 1,445$, $N_p = 1,422$, кристаллы удлиненно призматические, гексагональная сингония, т. пл. 70--75°; Na₃PO₄·8H₂O $N_g = 1,463$, N_p 1,450, призматические кристаллы с пирамилальным концом, наложены друг на друга, волокнистого моноклинического строения, т. пл. 86°, твердый раствор, образованный между Ne₃PO₄·12H₂O и K₃PO₄·7H₃O, N_g = '1.38, N_p = 1.34.

На рис. 2 даны микрофотограммы осадков 9, 10, 5, 11, 12 (табл.). Составы твердых фаз устанавливались химическим анализом центрифугированных осадков и подтверждались кристаллооптически. Как видим, на микрофотограммах отчетливо наблюдаются кристаллы, свойственные указанным областям кристаллизации.

Сняты кривые нагревания твердых фаз, подтверждающие данные химического анализа и кристаллооптики.

На рис. 3 приведены термограммы Na₃PO₄·12H₂O; Na₃PO₄·8H₂O и K₃PO₄·7H₂O, предварительно высушенных при температуре до 120°, а также твердого раствора, образованного между Na₃PO₄·12H₂O и K₃PO₄·7H₂O. Индивидуальность выделенных соединений подтверждается термограммами.

Следует отметить, что наибольшую часть квадрата Иенеке занимает поле кристаллизации Na₃PO₄·12H₂O, составляя 43,22% общей площади. Поле гидрометасиликата натрия составляет 3,4%, что указывает на его большую растворимость. Твердые фазы, выделенные в системе, соответственно занимают: поле твердых растворов III—6,8%, Na₃PO₄·8H₂O IV — 14,4%, Na₂SiO₃·9H₂O + Na₃PO₄·12H₂O V — 5,08% и K₃PO₄·7H₂O — 7,62% всей площади диаграммы.

Рис. 3. Термограмма: a — K₃PO₄·7H₂O; 6 — Na₃PO₄·8H₂O; в — Na₃PO₄·12H₂O+K₃PO₄·7H₃O; г — Na₃PO₄·12H₃O.

20°C-NEU Na⁺, K⁺/SIO₃, PO₄''-H₂O ϕ NBUAUP2 UPUSDUP LINEDSLENE ϕ SNELC

> Մ. Գ. ՄԱՆՎԵԼՅԱՆ, Վ. Դ. ԳԱԼՍՏՅԱՆ, Է. Ա. ՍԱՅԱՄՅԱՆ, Ա. Պ. ԳՏՈՒՆԱՇՅԱՆ Է Է. Բ. ՀՈՎՀԱՆՆԻՍՅԱՆ

ζωνσωσίμο ζ, πρ υμυσκόστο μπωχωύπου δύ δισμιμι μήδη δραφάρρι Na₂SiO₃·9H₂O; Na₃PO₄·12H₂O; Na₃PO₄·8H₃O, K₃PO₄·7H₃O, μήδη μπο δποιβδύδρι Na₃PO₄·12H₂O & K₃PO₄·7H₂O-h δηγία & dibre multo, ωδεσιστήμι ζ δωσωσίδη μιαράτατα δωρη Na₂SiO₃·9H₂O & Na₃PO₄·12H₂O-h δηγία βωσωσίμο δύ ωδεωστίωδ δυστίωδρωδη μια μοιμομικό δια δρη-

մոգրաֆիական ուսումնասիրություններ։

SOLUBILITY DIAGRAM OF THE Na⁺, K⁺/SiO₃-PO₄^{"-}H₂O QUATERNARY SYSTEM AT 20°C

M. G. MANVELIAN, V. D. GALSTIAN, E. A. SAYAMIAN, A. P. GYUNASHIAN and E. B. HOVHANISSIAN

The solubility diagram of the system $Na_2SiO_3 - K_2SiO_3 - Na_3PO_4 - K_3PO_4 - H_2O$ has been studied at 20°C. It is found that $Na_2SiO_3 \cdot 9H_2O$; $Na_3PO_4 \cdot 12H_2O$ solid phases and $Na_3PO_4 \cdot 8H_2O$, $K_3PO_4 \cdot 7H_2O$ solid solutions are separated. Crystallooptical and thermographical studies of the products have been performed.

ЛИТЕРАТУРА

- 1. М. Г. Манвелян, Г. Г. Бабаян, Э. А. Саямян, С. С. Восканян, Изв. АН Арм. ССР, ХН, № 2, 95 (1959).
- 2. Г. Г. Бабаян, Э. А. Саямян, Г. М. Дарбинян, Арм. хим. ж., 23, 986 (1970).
- 3. М. Г. Манвелян, Г. Г. Бабаян, Э. А. Саямян, Э. Б. Оганесян, Ав. св. 1116283/23—5, 1968.
- 4. Ф. Н. Неволин, В. Г. Барылник, Т. Г. Типисова, А. Н. Семенова, Изобретения, промышленные образцы, товарные знаки, № 7, 79 (1967).
- 5. E. King, J. Biochem., 67, 990 (1933).