XXVI, № 5, 1973

УДК 543.878+547.571+677.861.25+547.538.141

## О ВЛИЯНИИ ЗАМЕСТИТЕЛЕЙ НА РЕАКЦИОННОСПОСОБНОСТЬ ФУНКЦИОНАЛЬНЫХ ГРУПП В КАЧЕСТВЕ САМОСТОЯТЕЛЬНЫХ ЕДИНИЦ

При исследовании зависимости реакционноспособности молекул от их строения используются различные уравнения типа Гаммета. При этом влияние заместителей, в основном, разделяется на полярный, пространственный и резонансный (эффект сопряжения) факторы [1, 2, 3]. Известно, что в некоторых случаях растворители или другие посторонние вещества, не расходующиеся в реакции, очень сильно влияют на скорость реакции даже при их малых количествах. Отсюда становится ясным, что заместители могут влиять на реакцию не только взаимодействием с реагирующей группой, но и как посторонние вещества (растворители, примеси, сокатализаторы и т. д.), содержащие данную функциональную группу. Поэтому в уравнениях типа Гаммета необходимо отделить последнее влияние от других (когда оно имеет место). Это относится и к качественным интерпретациям влияния заместителей на реакционную способность.

Полученные нами данные о влиянии заместителей на реакционую способность бензальдегида ( $M_2$ ) при сополимеризации со стиролом ( $M_1$ ) под действием эфирата фтористого бора (ЭФБ) указывают на обоснованность вышеуказанного заключения.

Так как имеется прямолинейная зависимость между отношением концентраций стирола и бензальдегида в сополимере  $\left(\frac{m_1}{m_2}\right)$  и таким же отношением в смеси мономеров  $\left(\frac{[M_1]}{[M_2]}\right)$ , то влияние заместителей можно характеризовать отрезком A, отсекаемым от оси координат  $\left(\frac{m_1}{m_2}\right)$ , и тангенсом угла наклона (B) этой прямой. Химический смысл этих констант в [4]. Данные приведены на рис. 1, а определенные константы A и B-в таблице.

Заместители, согласно своим влияниям на констаты (A и B), располагаются в следующий ряд: M-NO<sub>2</sub>, M-CH<sub>3</sub>O, H, M-Cl, а согласно константам ( $\sigma$ ,  $\sigma$ <sup>OD</sup>,  $\sigma$ <sup>+</sup>,  $\sigma$ <sup>R</sup>,  $\sigma$ <sup>X</sup>) уравнений типа Гаммета располагаются в ряд: M-NO<sub>2</sub>, M-Cl, M-CH<sub>3</sub>O, H.

Таким образом, между константами A и В и константами типа Гаммета нет корреляции. Так как было известно, что ароматические (в особенности нитробензол) и хлорсодержащие соединения влияют на состав

Табли. Константы сополимеризвции стирола с альдегидами ( $M_2$ ) в массе (А и В) и в растворителях (D), под действием ЭФБ при 50°

| Мономеры, Ма          | Растворители | A   | В   | Д    |
|-----------------------|--------------|-----|-----|------|
| Бензальдегид          | _            | 1,5 | 0,4 | -    |
| м-нитробензальдегид   | _            | 3,0 | 1,3 | -    |
|                       | ннтробензол  | _   | 0 _ | 2,0  |
|                       | хлорбензол   | 111 | _   | 0,0  |
| м-хлорбензальдегид    | _            | 1,3 | 0,4 | -    |
|                       | хлорбензол   | -   | _   | 0,16 |
| м-метоксибензальдегид |              | 2,0 | 0.6 | _    |

сополимера при сополимеризации бензальдегида со стиролом, то вышеуказанное несоответствие можно объяснить тем, что заместители оказывают влияние не только на реакционную способность альдегидной группы, но и как растворители с аналогичными группами.

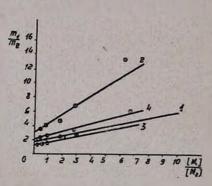



Рис. 1. Зависимость отношения молей стирола к молям замещенного бензальдегида  $\left(\frac{m_1}{m_3}\right)$  в сополимере от их отношения в смеси мономеров  $\frac{[M_1]}{[M_2]}$  при сополимернзации: 1—бензальдегида; 2— м-нитро-; 3—м-хлор-; 4— м-метоксибензальдегидов в массе, при 50°.

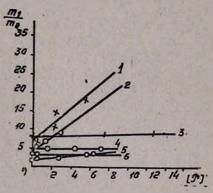



Рис. 1. Зависимость отношения молей стирола к молям замещенного бензальдегида  $\left(\frac{m_1}{m_2}\right)$  в сополимере от отношения молей растворителя к молям замещенного бензальдегида в реакционной смеси, при постоянном соотношении мономеров в их смеси  $\left(\frac{[M_1]}{[M_2]} = \text{const}\right)$  при сополимеризации м-нитробензальдегида в нитробензоле:  $1-\frac{[M_1]}{[M_2]}=0,2;\ 2-\frac{[M_1]}{[M_2]}=0,4;$  в хлорбензоле;  $3-\frac{[M_1]}{[M_2]}=0,2;\ 4-\frac{[M_1]}{[M_2]}=0,4;\ 6-\text{м-хлорбензальдегида}$  в хлорбензоле:  $\frac{[M_1]}{[M_2]}=0,4;\ 6-\text{м-хлорбензальдегида}$  в хлорбензоле:  $\frac{[M_1]}{[M_2]}=0,2$ .

Для проверки этой возможности нами исследована сополимеризация м-нитробензальдегида со стиролом в растворе нитробензола и хлорбензола и м-хлорбензальдегида со стиролом в хлорбензоле. Эти данные приведены на рис. 2. Как видим, влияние растворителей можно характеризовать тангенсом угла наклона (Д) прямой [4]. Эти данные приведены в таблице. Они показывают, что нитробензол, аналогично м-нитрозаместителю нитробензальдегида, уменьшает количество последнего в сополимере. Хлорбензол тоже уменьшает количество хлорбензальдегида в сополимере, хотя и незначительно.

Таким образом, в случае сополимеризации замещенных бензальдегидов со стиролом, заместители влияют не только на относительную активность альдегидных групп, но и на состав сополимера, аналогично растворителям, в качестве отдельных кинетических единиц.

## ЛИТЕРАТУРА

- 1. Г. У. Тафт, Пространственные эффекты в органической химии, Изд. ИЛ, М., 1960, стр. 562.
- В. А. Пальм, Основы количественной теории органических реакций, Изд. Химия, Л., 1967.
- К. Д. Риче, У. Ф. Сэджер, «Современные проблемы физической органической химии, Изд. Мир, М., 1967, стр. 498.
- 4. А. А. Дургарян, А. С. Григорян, Г. С. Саркисян, Высокомол. соед., 8А, 1755 (1971).

А. А. ДУРГАРЯН, А. С. ГРИГОРЯН

Ереванский государственный университет

Поступило 5 VII 1972