XXVI, № 3, 1973

УЛК 547.493.9

производные гуанидина

ху. 3-ХЛОР-4-АЛКОСИБЕНЗИЛАМИНЫ И -ГУАНИДИНЫ

П. Р. АКОПЯН, Т. Р. ОВСЕПЯН и А. А. АРОЯН

Институт тонкой органической химии имени А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 19 V 1972

Осуществлен синтез 3-хлор-4-алкоксибензиламинов (II). Взаимодействием последних с сульфатом S-метилизотиомочевины и с фенилизотиощианатом получены соответственно производные гуанидина III и тиомочевины IV.

Табл. 4, библ. ссылок 6.

При изучении структурных особенностей известных симпатолитических средств гуанидинового ряда (гуанетидин, бетанидин, ватенсол, энвакар и др.) трудно сделать обобщающие заключения относительновлияния какого-либо радикала или группы (кроме гуанидиновой) на гипотензивный эффект.

У одного препарата эффективным является сочетание В-гуанидиноэтильной группы с азациклооктаном (гуанетидин), у другого—сочетание гуанидинометильной группы с бензодиоксаном (энвакар). Активные структуры получены как при совмещении гуанидиноалкильной группы с незамещенной фенильной (бетанидин), так и с хлорзамещенной фенильной (ватенсол) группами. Наличие указанных активных препаратов среди производных гуанидина является основачием для новых синтетических исследований в этом ряду.

В настоящей работе, продолжая ранее начатые исследования [1,2], мы предприняли синтез замещенных гуанидинов III, сочетающих в структуре гуанидинометильную группу с 3-хлор-4-алкоксизамещенным фенильным радикалом. Синтез осуществили по схеме

$$RO \stackrel{C1}{\longleftarrow} CH_2N \stackrel{CO}{\longleftarrow} \stackrel{NH_3-NH_3}{\longleftarrow} RO \stackrel{C1}{\longleftarrow} CH_2NH_2 \stackrel{CH_3SC \stackrel{NH}{\longleftarrow} \cdot 0,5H_2SO_4}{\longleftarrow}$$

$$II$$

$$RO \stackrel{C1}{\longleftarrow} CH_2NHC \stackrel{NH}{\longleftarrow} \cdot 0,5H_2SO_4$$

Исходные для аминов II N-(3-хлор-4-алкоксибензил) фталимиды (I) получены взаимодействием 3-хлор-4-алкоксибензилхлоридов [3,4] с фталимидом калия в среде диметилформамида. Соединения I бесцветные

	٥/٥			Анализ, 0/0								
				C 1		H		, CI		l N		
R	Выход, о	Т. пл., °С	Молекулярная формула	найдено	вычис-	найдено	вычис-	найдено	вычис- лено	найдено	вычис-	R _f *
CH ₃	83,1	159—161	C ₁₆ H ₁₂ CINO ₃	63,50	63,69	4,39	4,01	11,48	11,75	4,94	4,64	0,35
C ₂ H ₅	79,1	136 -138	C ₁₇ H ₁₄ CINO ₃	64,84	64,66	4,23	4,47	11,18	11,23	4,87	4,44	0.40
C ₃ H ₇	76,9	108—110	C ₁₈ H ₁₆ CINO ₃	65,50	65,55	4,60	4,78	10,42	10.75	4,65	4,25	0,45
изо-С ₃ Н ₁	74,9	95—97	C ₁₈ H ₁₈ CINO ₃	65,65	65,55	4,48	4,78	10.87	10,75	4,04	4,25	0.48
C ₄ H ₉	76,5	102 - 104	C ₁₉ H ₁₈ CINO ₃	66,11	66,40	5,64	5,28	10,78	10,31	4,16	4,07	0,50
изо-С.Н.	72,7	116 -118	C ₁₉ H ₁₈ CINO ₃	66,70	66,40	5,12	5,28	10.55	10,31	3,84	4,07	0,54
C5H11	82,0	72—73	C20H20CINO3	66,85	66,13	5,98	5,63	10,23	9,91	3,79	3,91	
изо-С ₅ Н ₁₁	68,5	89 —91	C ₂₀ H ₂₀ CINO ₃	67,44	67,13	5,95	5,63	10,27	9,91	4,15	3,91	-
									-	7		1

^{*} Система эфир—пегролейный эфир (1:1), адсорбент—окись алюминия II степени активности (обнаружение парами йода).

R	Выход, °/0	Т. кип., °С/I м.н	Гидрэ- хлорид Т. пл., °C	Молекулярная формула
CH ₃	76,7	121—123	250 —251	C ₈ H ₁₁ Cl ₂ NO
C ₂ H ₅	75,7	125—127	236—238	C,H,3Cl,NO
C ₃ H ₇	60,5	132-135	248-250	C10H15C12NO
изо-С ₃ Н,	58,4	135—136	230 - 231	C10H15C12NO
C ₄ H ₉	76,6	149—151	241-243	C11H17CI2NO
изо-С ₄ Н ₉	75,4	152 - 153	246-248	C11H11CI2NO
C5H11	66,8	155 — 157	251-256	C12H19C12NO
изо-С ₅ Н ₁₁	73,2	162-163	252-251	C ₁₂ H ₁₉ Cl ₂ NO
изо-С ₄ Н ₉ С ₅ Н ₁₁	75,4 66,8	152 – 153 155 – 157	246-248 251-256	C ₁₁ H ₁₇ Cl ₂ NO C ₁₂ H ₁₉ Cl ₂ NO

Таблица 2

CH,NH,

Анализ, 0/0									
-	C	1	1	C1 N			N		
найдено вычис лено		найдено	вычис- лено	найдено	вычис- лено	найдено	вычис-		
46,47	46,17	4,80	4,84	33,96	34,05	6,48	6.73		
48,60	48,89	5,84	5,43	32,42	32,07	6,24	6,34		
51,03	51,07	6,30	6,00	29,96	30,16	5,55	5,96		
51,48	51,07	6,31	6,00	30,47	30,16	5,71	5,96		
52,53	52,88	6,44	6,47	28,23	29,45	5,31	5,62		
52,62	52,88	6,86	6,47	28,24	28,45	5.29	5,62		
54,50	54,75	7.08	6,89	26,63	26,95	5,18	5,32		
54,61	54,75	7,10	6,89	26,72	26,95	5,41	5,32		

вещества, хорошо кристаллизирующиеся из метанола. Гидразинолиз последних по Ингу и Манске [5] привел к 3-хлор-4-алкоксибензиламинам (II), которые представляют собой прозрачные жидкости, быстро мутнеющие на воздухе вследствие карбонизации.

Производные гуанидина III получены нагреванием аминов II с сульфатом S-метилизотиомочевины в водноспиртовой среде в течение 3 час. Замещенный гуанидин выпадает в виде кристаллического осадка пристоянии реакционной смеси в течение 10—12 час.

Для биологических испытаний из аминов II получены кристаллические гидрохлориды и производные тиомочевины IV. Последние синтезированы кипячением спиртовых растворов аминов с фенилизотиоцианатом.

$$II + C_6H_5NCS \longrightarrow RO CH_2NHCSNHC_6H_5$$
 IV

Чистота и индивидуальность замещенных фталимидов I и тиомочевины IV подтверждены тонкослойной хроматографией.

Экспериментальная часть

N-(3-Хлор-4-алкоксибензил) фталимиды (I) и 3-хлор-4-алкоксибензиламины (II) получены по ранее описанной методике [6] (табл. 1,2).

Сульфаты N-(3-хлор-4-алкоксибензил) гуанидинов (III). Смесь 0,01 моля II и 1,39 г (0,01 моля) сульфата S-метилизотиомочевины в 15 мл 50%-ного водного раствора этанола кипятят 3 часа и оставляют стоять 10—12 час. Выпавший осадок отфильтровывают и перекристаллизовывают из смеси этанола с водой (1:1) (табл. 3).

Таблица З

				A ı	на л	и 3,	0/0
-	%	Т. пл., °C		1	7	S	
R	Выход, 0		.Молекулярная формула	найдено	вычис- лено	найдено	вычис-
CH ₃	87,7	252—253	C,H,2CIN3O-0,5H2SO4	16,29	16,00	6,35	6,10
C ₂ H ₅	90,5	205—207	C ₁₀ H ₁₄ CIN ₃ O · 0,5H ₂ SO ₄	15,43	15,18	5,97	5,79
C ₃ H ₇	75,8	259-231	C11H16CIN3O-0,5H2SO4	14,81	14,45	5,82	5,51
изо-С ₃ Н ₇	75,9	255-258	C11H18CIN3O-0,5H2SO4	14,67	14,45	5,65	5,51
C ₄ H ₉	72,3	263 - 264	C12H18CIN3O-0,5H2SO4	13,91	13,78	5,44	5,26
изо-С ₄ Н ₉	82,2	257—259	C12H18CIN3O-0,5H2SO4	13,83	13,78	5,61	5,26
C ₅ H ₁₁	56,6	271—273	C13H20CIN3O-0,5H2SO4	13,25	13,18	5,15	5,03
изо-С ₅ Н ₁₁	84,9	265-266	C ₁₃ H ₂₀ CIN ₃ O 0,5H ₂ SO ₄	13,37	13,18	5,26	5,03

N-(3-Xлор-4- α лкоксибензил) тиомочевины (IV). Қ раствору 0,02 моля II в 15 мл этанола добавляют 1,5 г (0,02 моля) тиомочевины и кнам-тят 2 часа. Выпавший при растирании осадок отфильтровывают и перекристаллизовывают из этанола (табл. 4). На хроматограмме в тонкоч слое окиси алюминия II степени активности IV проявляются одним пятном. $R_{\rm f}$ в пределах 0,44 — 0,49 в эфире; обнаружение парами йода.

Таблица 4

10000	0/0	177		Анализ, 0/0					
				1	V	S			
R'	Выход, 0	Т. пл., °С	Молекулярная формула	пайдено	вычис-	найдено	вычис-		
СНа	95,4	139—141	C ₁₅ H ₁₅ CIN ₂ OS	9,31	9,15	10,36	10,45		
C ₂ H ₅	93,4	125—126	C16H17CIN2OS	8,50	8,73	9,72	9,99		
C ₃ H ₇	83,8	124—125	C ₁₇ H ₁₉ CIN ₂ OS	8,26	8,36	9,35	9,57		
230-C3H7	84,1	121—122	C17H19CIN2OS	8,06	8,36	9,26	9.57		
C ₄ H ₉	86,0	120—121		7,83	8,04	9,14	9,16		
130-C ₄ H ₉	95,6	128—129	C ₁₈ H ₂₁ CIN ₂ OS	7,97	8,04	9,03	9,16		
	86,0	120—121	C ₁₈ H ₂₁ CIN ₂ OS	7,83	8,04		9,14		

ԳՈՒԱՆԻԴԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

XV. 3-ՔԼՈՐ-4-ԱԼԿՕՔՍԻԲԵՆԶԻԼԱՄԻՆՆԵՐ ԵՎ -ԳՈՒԱՆԻԴԻՆՆԵՐ

Պ. Ռ. ՀԱԿՈԲՅԱՆ, Թ. Ռ. ՀՈՎՍԵՓՅԱՆ Ա Հ. Ա. ՀԱՐՈՅԱՆ

3-Քլոր-4-ալկօբսիթենզիլֆնալամիդների հիդրազինալիզով սիննեզված են 3բլոր-4-ալկօբսիբենզիլամիններ։ Տ-մենիլիզոնիոմիզանյունի և ֆենիլիզոնիոցիանատի հետ ամինների փոխազդմամբ համապատասխանորեն ստացված են գուանիդինի և նիտմիզանյունի ածանցյալներ։

Կենսաբանական փորձարկումների համար սինԹեզված ամիններից ըստացված են բյուրեղական հիդրոքրութիդներ և Թիոմիզանյութի ածանցյալներ։

GUANIDINE DERIVATIVES

XV. 3-CHLORO-4-ALKOXYBENZYLAMINES AND -CUANIDINES

P. R. AKOPIAN, T. R. HOVSEPIAN and H. A. HAROYAN

By the hydrazinolysis of 3-chloro-4-alkoxybenzylftalimides the 3-chloro-4-alkoxybenzylamines are synthesised. The latern compounds when treated with 5-methylisothiourea and phenylisothiocianate, produce the corresponding substituted guanidines and thioureas.

ЛИТЕРАТУРА

- 1. А. А. Ароян, Т. Р. Овсепян, П. Р. Акопян, Арм. хим. ж., 23, 629 (1970).
- 2. Т. Р. Овсепян, П. Р. Акопян, А. А. Ароян, Арм. хим. ж., (в печати).
- 3. А. А. Ароян, Т. Р. Овсепян, Р. Г. Мелик-Оганджанян, В. В. Ледяев, Арм. хим. ж., 22, 406 (1969).
- 4. А. А. Ароян, Т. Р. Овсепян, В. В. Ледяев, Арм. хим. ж., 23, 1025 (1970).
- 5. H. Jng, R. Manske, J. Chme. Soc., 1926, 2348.
- 6. А. А. Ароян, А. Е. Есаян, Арм. хим. ж., 21, 207 (1968).