2 Ц 3 4 Ц 4 Ц Ъ Г Р Г Р Ц 4 Ц Ъ Ц Г Г Ц 4 Р Р АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXVI, № 3, 1973

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 661.248+542.941/942+542.945.28+541.8

ВЛИЯНИЕ КОНЦЕНТРАЦИИ СЕРНИСТОГО ГАЗА НА ПРОЦЕСС ВОССТАНОВЛЕНИЯ СЕЛЕНА ИЗ АЗОТНО--СЕРНОКИСЛЫХ РАСТВОРОВ. I.

Г. Г. БАБАЯН, Г. С. ЧТЯН, Г. С. ПАНОСЯН, О. А. АДЖЕМЯН 41 Д. Р. АНДРЕАСЯН

Ереванский государственный университет

Поступило 8 VI 1972

Изучена кинетика восстановления селена из азотно-сернокислых растворов сериисто-азотной газовой смесью. Показан эквивалентный характер восстановления нитратиокисления сульфит-монов. На основании экспериментальных данных и обсуждения вероятных взаимодействий, происходящих в растворе, сделано предположение, что восстановление селена происходит при низких рН вследствие изменения окислительно-восстановительных потенциалов как $E_{\rm SO_3^2/Se}$ так и $E_{\rm SO_3^2/SO_4^2}$ с перевесом для селена

Рис. 3, библ. ссылок 8.

Основным сырьем для получения селена и теллура являются шламы сернокислотного и целлюлозно-бумажного производства. Принятая технология получения технического селена и теллура из шламов, вследствие колебания их содержания (2,5—60%), имеет комбинированный характер и состоит из пирометаллургического и тидрометаллургического этапов [1,2].

При комплесной гидрометаллургической переработке производственных пылей медно-химических предприятий [3] кек вторично подвергается обработке с целью извлечения селена и теллура в азотно-сернокислый раствор.

Низкая концентрация селена и теллура, наличие ощутимых количеств катионов переменной валентности, среда, имеющая скислительный характер,—все это обуславливает неприемлемость существующих технологических режимов для восстановления селена и теллура из азотносернокислых растворов.

В настоящей работе исследовано влияние концентрации сернистого- газа на процесс восстановления селена из азотно-сернокислых растворов.

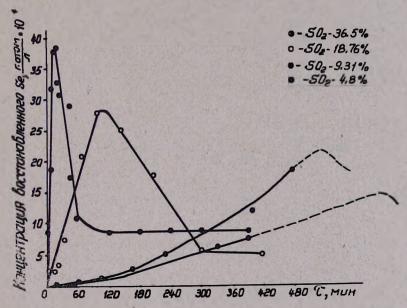
Экспериментальная часть

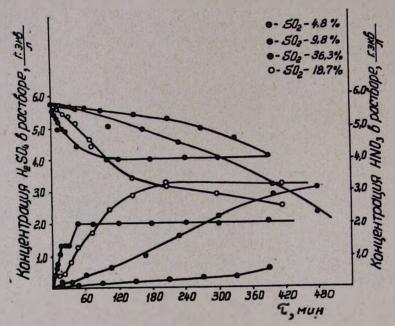
Восстановление селена проводилось с помощью искусственно приготовленных сериисто-азотных газовых смесей в реакторе барботажного типа, снабженного рубашкой для сохранения изотермичности процесса.

Концентрация нитрат-ионов определялась перманганатометрически, сульфат-иона—весовым методом [4], сернистый газ—методом анализа, основанном на взаимодействии сернистого газа с йодом [5].

Изучение влияния концентрации сернистого газа на кинетику восстановления селена во всех сериях опытов проводилось в идентичных условиях: начальная концентрация азотной кислоты 1,916 M, pH раствора—0,5, температура 20°.

На основании данных изменения скорости восстановления селена из азотно-сернокислых растворов в зависимости от концентрации сернистого газа построен график (рис. 1). Полученные кривые типичны для реакций, происходящих по ионно-радикальному механизму.




Рис. 1. Зависимость скорости восстановления селена от концентрации сернистого газа.

На кривых наблюдается явно выраженный индукционный период реакции восстановления, который резко сокращается с увеличением концентрации сернистого газа. Кривые характеризуются наличием максимума значения скорости восстановления селена, причем с увеличением концентрации сернистого газа значение этих максимумов увеличивается.

Окисление сульфит-ионов кислородом имеет каталитический характер и в определенных условиях может стимулироваться присутствием некоторых катионов переменной валентности или фотохимическим воздействием. Обсуждение экспериментальных данных механизма окисления

сернистого газа кислородом Габером и др. [6] привело к заключению, что этот процесс имеет цепной характер, идущий через радикал-ион *SO'3, образовавшийся или в результате каталитического действия ионоз переменной валентности, или фотохимического действия.

В данном случае при отсутствии кислорода в газовой смеси наблюдаемое увеличение конщентрации сульфат-ионов происходит за счет частичного восстановления нитрат-ионов [7].

Рнс. 2. Зависимость изменения концентрации серной и азотной кислот от концентрации сернистого газа.

На основании экспериментальных данных построен график зависимости изменения концентрации серной и азотной кислот от концентрации сернистого газа (рис. 2). Как видим, изменение концентрации серной и азотной кислот происходит в строго эквивалентном отношении. Этот факт подтверждает отсутствие каких-либо других факторов, влияющих на процесс окисления сульфит-ионов.

Была изучена динамика изменения рН растворов в процессе восстановления селена (рис. 3).

Обсуждение результатов

Если сопоставить результаты изменения скорости восстановления селена с изменением рН среды, то наблюдается совпадение активного периода восстановления селена с периодом интеноивного уменьшения рН среды (рис. 1 и 3). Эта закономерность сохраняется при всех концентра-

циях сернистого газа в процессе восстановления. Более того, с увеличением концентрации сернистого газа этот период уменьшается.

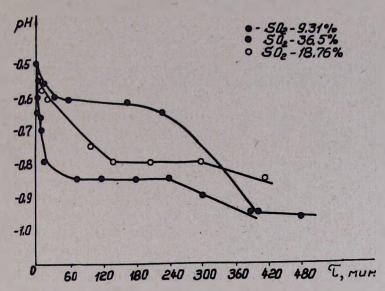


Рис. 3. Изменение pH раствора в процессе восстановления селена в зависимости от концентрации сернистого газа.

По-видимому, здесь решающую роль играют значения окислительно-восстановительных потенциалов. Окислительно-восстановительный потенциал $E_{\text{SeO}_3^2/\text{Se}}=0.17~s$ [8].

Этим различием обуславливается процесс восстановления, однако интенсивное увеличение концентрации водородных ионов резко изменяет значение окислительно-восстановительных потенциалов как селена $E_{\mathrm{SeO_3^2-/Se}}$, так и серы $E_{\mathrm{SO_3^2-/SO_2^2-}}$ с перевесом для селена.

До достижения постоянного значения pH среды характерно интенсивное увеличение концентрации серной кислоты, в основном, за очет восстановления нитрат-ионов.

В этом периоде с уменьшением рН среды в системе должна накапливаться окись селена. Под действием новых порций сернистого газа возможно его частичное восстановление до элементарного селена, но в условиях избытка восстановителя, по-видимому, образуются соответствующие политионатовые кислоты типа $H_2SeS_2O_6$ и $H_2Se_2SO_6$. Параллельно с накоплением политионатовых кислот идет и их разрушение [1] с выделением элементарното селена.

В дальнейшем, с уменьшением концентрации селенит-ионов в растворе, значение окислительно-восстановительного потенциала селена уменьшается, а серы увеличивается за счет постоянного потока сернистого газа в реажционную среду. Этому периоду соответствует постоянство значений рН (рис. 3).

ԾԾՄԲԱՅԻՆ ԳԱԶԻ ԿՈՆՑԵՆՏՐԱՑԻԱՅԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ԱԶՈՏԱ–ԾԾՄԲԱԿԱՆ ԼՈՒԾՈՒՑԹՆԵՐԻՑ ՍԵԼԵՆԻ ՎԵՐԱԿԱՆԳՆՄԱՆ ՊՐՈՑԵՍԻ ՎՐԱ

Հ. Գ. ԲԱԲԱՑԱՆ, Գ. Ս. ՉԻՑԱՆ, Գ. Ս. ՓԱՆՈՍՑԱՆ, Օ. Հ. ԱՃԵՄՅԱՆ և Ջ. Ռ. ԱՆԴՐԵԱՍՅԱՆ

Ուսումնասիրված է ազոտա-ծծմբանիկվական լուծույթնեան պրոցեսի հոսրացված ծծմբային դազի օգնությամբ սելենի վերականգնման պրոցեսի հինետիկան։

Ցույց է տրված, որ նիտրատ իոնի վերականգնումը և սուլֆիտ իոնի օջսիդացումն ընթանում են համարժեք օրինաչափությամբ։ Փորձնական տրվլայների հիման վրա քննարկված են ուսումնասիրվող սիստեմում ընթագող

Տիմնական հավանական քիմիական փոխարկումները։

ծնիադրվում է, որ pH-ի ցածր արժեքնիրի դեպքում լուծույիից սելենի վերականդնումը պայմանավորված է սելենիտ-սելեն, սուլֆիտ-սուլֆատ փոխարկումների օքսիդա-վերականդնման պոտենցիալների արժեքների անով, ի Հաշիվ միջավայրի Թիվայնության փոփոխման։ Այդ փոխարկումների օքսիդա-վերականդնման պոտենցիալների փոփոխություն ընդ-Հանուր ընդանում է վերջինի գետիրարկումների արժեքների փոփոխում է վերջինի գետակում արժեքների արժեքնե

THE INFLUENCE OF SO₂. CONCENTRATION ON THE REDUCTION OF SELENIUM IN SOLUTIONS OF MIXTURES OF NITRIC AND SULPHURIC ACIDS. I

H. G. BABAYAN, G. S. CHTIAN, G. S. PANOSSIAN, O. A. AJEMIAN and Y. R. ANDREASSIAN

The reduction of selenium in solutions of mixtures of sulphuric and nitric acids in the presence of gases has been studied.

ЛИТЕРАТУРА

- 1. А. А. Кудрявцев. Химия и технология селена и теллура, Изд. Высшая школа, М., 1961, стр. 120.
- 2. Л. А. Сошникова, М. Е. Езерницкая, Цветные металлы. № 3. 1960. стр. 55.
- 3. Г. Г. Бабаян, Г. С. Чтян, Г. С. Паносян, С. О. Апян, А. А. Манукян, Р. А. Закарян, Промышленность Армении, 7, 1961, стр. 16.
- А. П. Крешков, Основы аналитической химии, Изд. «Химия», М., 1970, т. 2, стр. 257, 370.
- 5. А. Г. Амелин, Производство серной кислоты, Госхимиздат, М., 1956, стр. 313, 352.
- 6. F. Haber, R. Willy tutter; Ber., 64, 2844 (1931).
- 7. H. Backstrom, L. Phys. Chem., 25, 122 (1939).
- 8. Ю. Ю. Лурье, Спр. по аналит. химии, Изд. «Химия», М., 1965, стр. 274.