XXVI, № 1, 1973

УДК 547. 233+547.812.5

ИССЛЕДОВАНИЯ В ОБЛАСТИ НЕНАСЫЩЕННЫХ ЛАКТОНОВ

XVII. ВЗАИМОДЕЙСТВИЕ 4-КАРБЭТОКСИ-5,6,6-ТРИАЛКИЛ-3,6-ГИДРОПИРОНОВ-2 С АМИНАМИ

А. А. АВЕТИСЯН, К. Г. АКОПЯН и М. Т. ДАНГЯН

Ереванский государственный университет

Поступило 29 III 1972

Получены амиды 4-карбокси-5,6,6-триалкил-3,6-дигидрэпиронов-2 взаимодействием соответствующих эфиров с аминами. Строение полученных веществ доказано встречным синтезом из хлорангидрида 4-карбокси-5,6,6-триметил-3-дигидропиронов-2 и аминов и данными ИК спектрэскопии.

Табл. 1, библ. ссылок 4.

В литературе имеются данные о реакциях насыщенных и ненасыщенных шестичленных лактонов с первичными аминами. При этом в основном получаются продукты нуклеофильной атаки амина по карбонильной пруште лактонного щикла и, в зависимости от условий реакции, получаются оксиамиды или аминокислоты [1,2].

Например, под действием различных аминов циклическая система α-пирона раскрывается с образованием соединений алифатического ряда, а при действии на 6-алкил-3-карбэтокси-α-пироны аммиака или амина образуются α-карбэтоксиаминоалкадиен-2,4овые кислоты, вместо ожидаемых амидов 6-алкил-α-пирон-3-карбоновых кислот, что представляет собой новый тип раскрытия лактонного кольца [3].

В невасыщенных 4-карбэтокои-5,6,6-триалкил-3,6-дигидропиронах-2, синтезированных нами конденсацией диэтилового эфира янтарной кислоты с α-кетоспиртами [4], помимо реакции аминов с карбонильной группой лактона, возможны также реакции по карбэтокои группе и присоединение по активированной двойной связи.

Взаимодействие 4-карбэтокси-5,6,6-триалкил-3,6-дигидропиронов-2 с различными первичными и вторичными аминами при комнатной температуре протекает исключительно по карбэтокси пруппе, без затрагивания двойной связи и лактонного кольца. В результате синтезированы амиды 4-карбокси-5,6,6-триалкил-3,6-дигидропиронов-2

$$\begin{array}{c|c} COOC_2H_5 & CONR''R''' \\ CH_3 & CH_3 \\ R & CH_$$

I. a, $R=R'=CH_3$, R''=H, $R'''=CH_2C_6H_5$; 6. $R=R'=CH_3$, R''=H, $R'''=C_3H_7$; B. $R=R'=CH_3$, R''=H, $R'''=C_6H_{13}$; r. $R=R'=CH_3$, R''=H, $R'''=C_4H_9$;

л.
$$R = R' = CH_3$$
, $R'' = R''' = C_2H_5$; e. $R = R' = CH_3$, $R'' = R''' = C_6H_5$; ж. $R = R' = CH_3$.
 $R'' = H$, $R''' = CH_2CH_3OH$; з, $RR' = (CH_2)_5$, $R'' = H$, $R''' = C_3H_7$; н, $RR' = (CH_2)_5$, $R'' = H$, $R''' = CH_2CH_2OH$; л, $RR' = (CH_2)_5$, $R'' = R''' = C_2H_5$; м, $RR' = (CH_2)_5$, $R''' = R''' = C_6H_5$.

Строение полученных амидов кислот доказано встречным синтезом и ИК спектральным исследованием. В ИК спектрах полученных амидолактонов найдены характерные частоты поглощения карбонильной группы пестичленного лактона 1735—1740, двойной связи 1680—1685 и амидной карбонильной группы 1640—1645 см—1.

Изучалась реакция кислотного гидролиза тех же карбэтоксилактонов. Показано, что в присутствии серной кислоты реакция протекает с сохранением лактонного кольца и приводит к получению 4-карбоксипроизводных соответствующих пиронов-2 (II a, б).

Хлорангидрид 4-карбокси-5,6,6-триметил-3,6-дигидропирона-2 получили действием хлористого тионила. Взаимодействием полученного хлорангидрида с различными аминами синтезированы соответствующие амиды, константы которых полностью совпадают с константами вышесписанных амидов.

COOH

$$CH_3$$
 HC_3
 CH_3
 C

IV. a, R=R'=H; 6, R=H, $R'=CH_2$; B, $R=R'=CH_3$.

Экспериментальная часть

Амиды 4-карбокси-5,6,6-триалкил-3,6-дигидропиронов-2 (I а—л). Смесь 4 гисходного пирона-2 и амина (в избытке) в 5 мл сухого бензола оставляют при комнатной температуре 15—20 часов. После удаления растворителя и избытка амина остаток перекристаллизовывают из ксилола. Константы полученных амидов приведены в таблице.

Кислотный гидролиз 4-карбэтокси-5,6,6-триалкил-3,6-дигидропиронов-2 (II а, б). Смесь 4 г эфиролактона и 20 мл 20%-ного раствора серной кислоты нагревают на водяной баже 15—20 часов. Выпавшие кристаллы отфильтровывают и перекристаллизовывают из гептана.

Таблица

Амиды 4-карбокси-5,6,6-триалкил-3,6-дигидропиронов-2 (1а-м)

Продукт реакции						Анализ, °/о					
R	R'	R‴	R'''	Выход,	Т. пл.,	найдено			вычислено		
						С	Н	N	С	н	N
CH ₃	CH3	н	C ₃ H ₇	93,76	125—126	69,89	7,01	5,2	70,33	6,96	5,127
CH,	CH,	Н	C ₄ H ₉	75,4	75—76	-	-	5,6	-	-	5,85
CH ₃	CH ₃	Н	C ₆ H ₁₃	88,6	70-72	_		5,3	-	-	5,24
CH,	CH ₃	Н	CH ₂ C ₆ H ₅	95,3	130—131	-	-	6,52	_	-	6,22
CH ₃	CH ₃	C ₂ H ₅	C ₃ H ₅	56,5	162	_	-	5,46	_	-	5,85
*CH ₂	CH ₃	C ₆ H ₅	C _a H ₅	47,7	105	75,44	6,5	3,9	75,22	6,24	4,14
(CH ₂) ₅		Н	C ₃ H ₇	75,5	103-104	-	-	5,18	_	-	5,2
(CH ₂) ₅		Н	CH,C,H,	76,7	118	-	_	4,49	_		4,47
(CH ₂) ₅		C ₂ H ₅	C ₃ H ₅	63,6	104	_	-	4,86	-	_	5,02
*(CH ₂) ₅		C.H.	C _s H ₅	39,7	131—132	-	_	3,4	_	_	3,73
(CH ₂) ₅		Н	CH,CH,OH	54	109	55	-	4,96	-	_	5,24
CH ₃	CH ₃	Н	CH ₂ CH ₂ OH	65,42	106	0-	-	6,68	-	-	6,17
					317		1	100	100		

[•] Реакция протекает только при нагревании на водяной бане.

Получают: а) 3,2 г (92,2%) 4-карбокси-5,6,6-триметил-3,6-дигидропирона-2 (Иа) с т. пл. 177—178°. Найдено %: С 58,5; Н 7,3. С₉Н₁₂О₄. Вычислено %: С 58,7; Н 7,6. б) 2,52 г (70,4%) 4-карбокси-5-метил-6,6-пентаметилен-3,6-дитидропирона-2 (Иб) с т. пл. 156°. Найдено %: С 64,19; Н 7,26; С₁₂Н₁₈О₄. Вычислено %: С 64,2; Н 7,14.

Хлорангидрид 4-карбокси-5,6,6-триметил-3,6-дигидропирона-2 (111). Смесь 4 г лактономислоты и 15 мл хлористото тионила в 30 мл сухого бензола натревают на водяной бане при 40—50° в течение 10 часов. После удаления бензола и избытка хлористого тионила, получают 2,7 г (61,8%) хлорангидрида с т. пл. 145—147° (из смеси толуола и петролейного эфира). Найдено %: С1 17,36. С9H₁1O₃C1. Вычислено %: С1 17,53.

Взаимодействие хлорангидрида 4-карбокси-5,6,6-триметил-3,6-ди-гидропирона-2 с аминами. Смесь 3 г хлорангидрида III в 15 мл сухого бензола и амина (в избытке) оставляют при комнатной температуре 10—15 часов, отфильтровывают хлоргидрат амина. После отгонки растворителя и избытка амина остаток перекристаллизовывают из ксилола и получают 1а 3,2 г (7,1%) и 16 3,8 г (95,5%).

В случае газообразных аминов в раствор 3 г хлорангидрида в 15 мл сухого бензола пропускают газообразный амин в течение часа, отфильтровывают хлоргидрат амина, отгоняют растворитель и перекристаллизовывают из ксилола. Получают: VIa 2,5 г (92,2%) с т. пл. 90°. Найдено %: N 7,5. $C_9H_{19}O_3N$. Вычислено %: N 7,65. VI6 1,7 г (58,4%) с т. пл. 48—49°. Найдено %: N 6,85. $C_{10}H_{16}O_3N$. Вычислено %: N 7,1. VIв 2,7 г (93,75%) с т. пл. 1112°. Найдено %: N 7,15. $C_{11}H_{17}O_3N$. Вычислено %: N 7,18.

ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆՆԵՐ ՉՀԱԳԵՑԱԾ ԼԱԿՏՈՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

XVII. 4–ԿԱՐՔԷԹՕՔՍԿ-Ճ,6,6–ՏՐԻԱԼԿԻԼ-Յ,6–ԳԻՀԻԴՐՈՊԻՐՈՆ-2–ՆԵՐԻ ՌԵԱԿՑԻԱՆ ԱՄԻՆՆԵՐԻ ՀԵՏ

Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Ք. Դ. ՀԱԿՈՐՅԱՆ և Մ. Տ. ԴԱՆՂՅԱՆ

Անջուր ամինների հետ 4-կարբէԹօքսի-5,6,6-տրիալկիլ-3,6-դեհիդրոոլիրոն-2-ների փոխազդմամբ ստացվել են 4-կարբօքսի-5,6,6-տրիալկիլ-.3,6-դեհիդրոսլիրոն-2-ների ամիդները (տես՝ աղ.)։

Ստացված միացությունների կառուցվածքն ապացուցված է իկ սպեկտրների տվյալներով, ամիններից և 4-քարրօքսի-5,6,6-տրիմեթիլ-3,6-դիհիդրոսրիրոն-2-ի քլորանհիդրիդից հանդիպակաց սինթեզով։

STUDY OF UNSATURATED LACTONES

XVII. THE REACTION OF 4-CARBETHOXY-5,6,6-TRIALKYL-3,6-DIHYDRO-PYRONES-2 WITH AMINES

A. A. AVETISSIAN, K. G. HAKOPIAN and M. T. DANGHIAN

The interaction of 4-carbethoxy-5,6,6-trialkyl-3,6-dihydropyrones-2 with amines produces amides of 4-carboxy-5,6,6-trialkyl-3,6-dihydropyrones-2.

The structure of the product is established by UV spectroscopy and by the opposite synthesis.

ЛИТЕРАТУРА

- 1. F. Sterphan, E. Marcus, J. Org. Chem., 34, 2527 (1969).
- 2. Н. П. Шушерина, Р. Я. Левина, З. С. Сиденко, ЖОХ, 29, 398 (1959).
- 3. И. К. Кочетков, Л. И. Кудряшов, ЖОХ, 28, 3020 (1958).
- 4. А. А. Австисян, К. Г. Акопян, М. Т. Дангян, ЖОрХ в печати.