XXV, № 3, 1972

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 546.16+546.34+546.35

ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ СИСТЕМЫ ФТОРАЛЮМИНАТОВ РЕДКИХ ЩЕЛОЧНЫХ МЕТАЛЛОВ

III. ДИАГРАММА ПЛАВКОСТИ СИСТЕМЫ LigAIF6-Cs3AIF6

Г. Г. БАБАЯН, К. А. ТЕР-АРАКЕЛЯН, С. Г. ГАМБАРЯН и Р. Т. МКРТЧЯН

Ереванский государственный университет

Поступило 26 IV 1971

Проведено термографическое и кристаллооптическое исследование системы Li₃AlF₆—Cs₃AlF₆. Показано, что эти вещества образуют два химических соединения: Li₃AlF₆-Cs₃AlF₆ и Li₃AlF₆.2Cs₃AlF₆, распадающиеся при температурах выше 628 и 680°. Диаграмма плавкости исследованной системы содержит поля кристаллизации твердых растворов.

Рис. 1, табл. 1, библ. ссылок 2.

Настоящее исследование является продолжением нашей работы по изучению системы фторалюминатов редких щелочных металлов [1-2]. Полученные результаты будут использованы при построении диаграммы плавкости тройной системы Li₂AlF₈-Rb₂AlF₈-Cs₃AlF₈.

Экспериментальная часть

Гексафторалюминаты лития и цезия, необходимые для изучения системы Li₃AlF₆—Cs₃AlF₆, были приготовлены из химически чистых фторидов алюминия, лития и цезия путем растворения эквимолекулярных количеств AlF₃ в расплавах LiF и CsF при 850—950°. Сплавление производилось в платиновой посуде по методике [1]. Химический анализ средних проб, отобранных из приготовленных солей, показал, что составы полученных продуктов близки к расчетным. Диаграмма плавкости системы Li₃AlF₆—Cs₃AlF₆ строилась на основании температурных эффектов, отвечающих фазовым превращениям, происходящим при охлаждении различных по составу раоплавов и определенным по методике, аналогичной описанной [1].

Для построения диаграммы плавкости исследуемой системы было проведено детальное изучение 30 образцов, содержащих от 1100% Li₃AlF₆ до 100% Cs₃AlF₆. Некоторые образцы подвертались кристаллооптическому анализу (табл.). По результатам термопрафических и кристаллооптических исследований построена диаграмма плавкости системы Li₃AlF₆—Cs₃AlF₆ (рис.), содержащая 114 полей кристаллизации исходных и новообразованных фаз.

Полиморфный переход высокотемпературной модификации гексафторалюмината лития в низкотемпературную происходит крайне медленно, что значительно затрудняет его обнаружение. Однако при исследовании трехкомпонентной смеси, содержащей Li₃AlF₆, Rb₃AlF₆ и Cs₃AlF₆, полиморфный переход β-Li₃AlF₆ в α-Li₃AlF₆ хорошо прослеживается и становится возможным установить его температуру — 622°.

Результаты кристаллооптических исследований

Таблица

Со держа- ние LI ₃ AIF в образце, + ол. %	Кристалдооптическая характеристика образца
93,0	В основном наблюдаются кристаллы Li ₃ AIF ₆ . Видны также бесцветные кристаллы короткопризматической, тонкопризматической формы, соответствующие фазе Li ₃ AIF ₆ ·Cs ₃ AIF ₆ с положительным удлинением N _x II C. Спайность отсутствует. n _g =1,440; n _p =1,429. n _g -n _p =0,011.
64,2	Наблюдаются две фазы: α-Li ₃ AIF ₈ и Li ₃ AIF ₈ -Cs ₃ AIF ₈ . Формы роста кристаллов характерны для обеих фаз.
54,2 (образец закален при 690°)	В основном присутствуют кристалды Li ₃ AIF ₈ ·Cs ₃ AIF ₈ . Наблюдается также значительное количество дендрообразных изотропных кристаллов фазь δ , показатель преломления которых $n = 1,394$. Двух-фазность образца объясняется несовершенностью закалки.
50,0	Наблюдаются кристаллы Li ₃ AIF ₆ .Cs ₃ AIF ₆ .
40,0	В поле наблюдения основное место занимают кристаллы Li ₃ AlF ₆ -Cs ₃ AlF ₆ и бесцветные кристаллы Li ₃ AlF ₆ ·2Cs ₃ AlF ₆ , имеющие таблитчатую, призматическую и тонкопризматическую формы. Сингония гексагональная $Z = 3$; удлинение положительное. $N_g \parallel C$. Спайность отсутствует. $n_g = 1,448$; $n_p = 1,431$; $n_g - n_p = 0,017$. Видны первичные выделения фазы δ .
34,8	В основном наблюдаются фазы Li ₃ AlF ₆ ·Cs ₃ AlF ₆ и Li ₃ AlF ₆ ·2Cs ₃ AlF ₆ . Присутствует незначительное количество дендрообразных изотроп- ных кристаллов.
33,3	Наблюдаются кристаллы Li ₃ AlF ₆ .2Cs ₃ AlF ₆ .
. 14,9	В основном присутствуют игольчатые тонкопризматические кристаллы фазы E с $n_g = 1,450$; $n_p = 1,439$; $n_g - n_p = 0,011$. Удлинение положительное. $N_g \parallel C$. В незначительном количестве присутствуют кристаллы Li ₃ AlF ₈ ·2Cs ₃ AlE ₈ .

Образующиеся в системе Li₃AlF₆—Cs₃AlF₆ твердые растворы, имеющие температурный максимум на кривой ликвидуса, с понижением температуры до 560° распадаются с образованием кристаллической смеси

196

a-Li₃AIF₆ и Li₃AIF₆·Cs₃AIF₅. Последнее соединение в чистом виде образуется при температуре ниже 628° и содержании 50 мол. % Cs₃AIF₆ в результате реакции в твердофазном состоянии. В исследуемой системе образуются также инконгруэнтно плавящееся соединение Li₃AIF₆ · 2Cs₃AIF₆ и твердые растворы на основе Cs₃AIF₆.

Рис. Диаграмма плавкости системы Li3AlF .- Cs3AlF.

Таким образом, диаграмма плавкости системы Li₃AlF₆—Cs₃AlF₆ представляет бинарную систему с инконгруэнтно плавящимся соединением, твердыми растворами с максимумом на кривой ликвидуса, образующимся в твердофазном состоянии соединением и ограниченными твердыми растворами.

ՀԱԶՎԱԳՅՈՒՏ ԱԼԿԱԼԻԱԿԱՆ ՄԵՏԱՂՆԵՐԻ ՖՏՈՐԱԼՅՈՒՄԻՆԱՏՆԵՐ ՊԱՐՈՒՆԱԿՈՂ ՍԻՍՏԵՄՆԵՐԻ ՖԻԶԻԿԱ-ՔԻՄԻԱԿԱՆ ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ

III. LI3AIF -- CS3AIF, UNUSOUN LULUUL ANUAPUUC

2. Գ. ԲԱԲԱՑԱՆ, Կ. Ա. SBP-ԱՌԱՔԵԼՑԱՆ, Ս. Գ. ՂԱՄԲԱՐՑԱՆ L Ռ. S. ՄԿՐSՉՑԱՆ

 $P_{Incphonuouumhuuuumhuuuuu k BbpJnqpuu $h4 հետազոտու BInchbp հիման վրա$ կառուցված է Li₃AlF₆—Cs₃AlF₆ սիստեմի հալման դիագրամը։ 8ույց է տրված,որ սիստեմում առաջանում են երկու միացու BInchp Li₃AlF₆·Cs₂AlF₆ kLi₂AlF₆·2Cs₂AlF₆, որոնը 628 և 680°-ից բարձր քայքայվում են։ Հետազոաված սիստեմում առկա են պինդ յուծույթների առաջացման տիրույթներ։

Г. Г. Бабаян, К. А. Тер-Аракелян, С. Г. Гамбарян, Р. Т. Миртчян

PHYSICO-CHEMICAL STUDIES OF RARE ALKALI METAL FLUOROALUMINATE SYSTEMS

III. MELTING DIAGRAM OF LIJAIF -- CSJAIF SYSTEM

H. G. BABAYAN, K. A. TER-ARAKELIAN, S. G. GHAMBARIAN and R. M. MKRTCHIAN

Summary

Thermographic and crystalooptical study of the $Li_3AIF_8-Cs_3AIF_8$ system has been performed. These two substances form $Li_3AIF_8\cdot Cs_3AIF_8$ and $Li_3AIF_8\cdot 2Cs_3AIF_8$ compounds which decompose at high themperatures. Melting diagram is given.

ЛИТЕРАТУРА

1. Г. Г. Бабаян, К. А. Тер-Аракелян, С. А. Бабаян, Арм. хнм. ж., 23, 328 (1970). 2. Г. Г. Бабаян, К. А. Тер-Аракелян, Р. Т. Мкртчян, Арм. хнм. ж., 23, 892 (1970).