XXV, № 12, 1972

УДК 542.91+547.872/874

синтез пестицидов

2-МЕТИЛМЕРКАПТО (АЛКОКСИ) 4-АЛКИЛ (ДИАЛКИЛ) АМИНО-6-а-КАРБ-АЛКОКСИ-а-МЕТИЛЭТИЛАМИНО-симм-ТРИАЗИНЫ

В. В. ДОВЛАТЯН и Ф. В. АВЕТИСЯН

Армянский сельскохозяйственный институт (Ереван)

Поступило 27 XII 1971

Гидрохлориды алкиловых эфиров α-аминоизомасляной кислоты под действием хлористого цианура и в присутствии щелочи образуют 2,4-дихлор-6-α-карбалкокси-α-метилэтиламино-сими-привзины. Последние при взаимодействии с аминами в присутствии щелочи двют 2-хлор-4-алкил (диалкил) амино-6-α-карбалкокси-α-метилэтиламино-симитовазины.

Полученные соединения через промежуточные соли тиурония превращены в 2-метилмеркапто-, а под действием алкоголятов натрия в 2-алкокомпроизводные.

Табл. 2, библ. осылок 5.

Среди производных симм-приавина, синтезированных в качестве селективных гербицидов, выделяются 2-метилмеркапто-4,6-бис-алкилами-во-симм-триазины. За последние годы особенно широко рекомендуются гербициды на основе 2-метилмеркапто-4-изопропиламино-6-(3-метокси-пропиламино)-симм-триазина (I) и 2-метил-4-этиламино-6-трет-бупиламино-симм-триазина (II).

$$C_{2}H_{3}NHCHN$$
 $C_{3}H_{3}NHCHN$
 $C_{3}H_{3}NH$
 $C_{3}H_{3}NH$
 $C_{4}H_{5}NH$
 $C_{5}H_{5}NH$
 $C_{5}H_{5}NH$

Препараты гезаран и гезаран-2079 в качестве одного из основных действующих веществ содержат 2-метилмеркапто-4-изопропил-6-(3-метоконпропил) амино-симм-триазин. Указанные препараты, а также 2-метилмеркапто-4-этиламино-6-трет-бутиламино-симм-приазин испытываются для борьбы с двудольными сорняками в посевах культурных злаков (1—3).

Как видно из приведенных формул, основными структурными элементами перечисленных гербицидов являются липофильная метокоильная группа и разветвленная углеродная цепь. С учетом этих структурных особенностей были бы закономерны поиски гербицидов узкоизбирательного действия среди 2-метилмеркапто (алкокси) 4-алкил (диалкил) амано-6-а-карбалкокси-а-метилэтиламино-симм-триазинов:

Под действием смеси соляной кислоты (или хлористого водорода) и спирта на оинтезированные ранее 2-хлор-4-алкиламино-6-α-метил-ацианэтиламино-симм-триазины [4] следовало ожидать образование 2-хлор-4-алкиламино-6-α-карбалкокоиэтиламино-симм-триазинов. Однако опыты показали, что образующиеся при этом продукты не содержат хлора и, по данным элементного анализа и ИК спектроскопии, представляют собой 2-окси-4-алкиламино-6-а-карбалкокси-а-метилэтиламино-симм-триазины. Следовательно, при обычном способе превращения циантрушны в карбалкоксильную наряду с алкоголизом исходных продуктов по месту циантрупны имеет место также их гидролиз за счет подвижного атома хлора:

 $^{\circ}$ В этой связи изучалась возможность получения намеченных соединений с применением гидрохлоридов алкиловых эфиров $^{\alpha}$ -аминоизомасляной кислоты (VI, VII, $R=CH_8$, C_3H_5), полученных под действием хлористого водорода на спиртовый раствор гидрохлорида нитрила $^{\alpha}$ -амино-изомасляной кислоты.

При конденсации указанных гидрохлоридов с хлористым циануром в среде ацетона при низкой температуре и под действием водной щелочи были получены 2,4-дихлор-6-карбалкокои-α-метилэтиламино- симм-приазины (VIII—IX), которые под действием гидрохлоридов алкиламинов в присутствии акцепторов хлористого водорода образуют ожидаемые 2-хлор-4-алкиламино-6-а-карбалкокси-а-метилэтиламино-симм- триазины по схеме:

Полученные таким образом соединения с тиомочевиной образуют соответствующие соли тиурония. Последние, без выделения в отдельности, под действием щелочи превращаются в меркаптиды, метилированием которых диметилсульфатом были получены целевые продукты:

$$X-XVII \xrightarrow{NH_{3}CSNH_{9}} R"R'NC \xrightarrow{CNHC(CH_{3})_{3}COOR} \xrightarrow{N_{3}OH} R"R'NC \xrightarrow{CNHC(CH_{3})_{3}COOR} \xrightarrow{N_{3}OH} R"R'NC \xrightarrow{CNHC(CH_{3})_{3}COOR} \xrightarrow{N_{3}OH} R"R'NC \xrightarrow{CNHC(CH_{3})_{3}COOR} \xrightarrow{N_{3}OH} XVIII-XXII$$

Одновременно было установлено, что 2-хлор-4-алкил (диалкил)амино-*симм*-триазины под действием алкоголятов натрия превращаются в ожидаемые 2-алкоксипроизводные:

Экспериментальная часть

2-Окси-4-алкиламино-6-а-карбалкокси-а-метилэтиламино-симм-триазины (III—V). Через смесь 0,01 моля 2-хлор-4-алкиламино-6-а-циан-а-метилэтиламино-симм-триазина и 4 мл метанола (этанола) пропускают сукой хлористый водород до полного насыщения и смесь кипятят на водяной бане в течение 4 часов. Затем отгоняют опирт, остаток растворяют в воде, раствор отсасывают и фильтрат нейтрализуют. Выпавший осадок отсасывают и высущивают на воздухе. Константы полученных соединений приведены в табл. 1.

Гидрохлориды алкиловых эфиров α-аминоизомасляной кислоты (VI—VII). 8,4 ε (0,1 моля) нитрила α-аминоизомасляной кислоты растворяют в абсолютном эфире и при охлаждении ледяной водой добавляют вфирный раствор хлористого водорода до прекращения выделения мути. Спустя 2—3 часа отфильтровывают выпавший осадок и высушивают на воздухе. Выход 12 ε (100%), т. пл. 146° [5].

x	R	R′	R"	Молекулярная формула	Выход, °/0
ОН	СН	Н	C ₂ H ₅	C10H17N5O3	64,0
ОН	CH,	Н	изо-С _а Н _т	C11H19N5O3	89,9
ОН	C ₂ H ₅	Н	uso-CaH,	C ₁₂ H ₂₁ N ₅ O ₃	71,4
SCH ₃	CH ₃	Н	Н	C,H15N5O3S	78,3
SCH ₃	C ₂ H ₅	н	Н	C10H17N5O2S	90,2
SCH ₃	CH ₃	Н	C ₂ H ₅	C11H19N5O2S	80,6
SCH ₃	CH ₃	Н	изо-С ₃ Н ₇	C13H27N5O3S	90,0
SCH ₃	C ₂ H ₈	н	C ₂ H ₈	C12H21N5O2S	80,1
SCH ₃	C,H	Н	uso-C ₃ H ₇	C13 H23 N8O2S	90,3
OCH ₃	CH ₃	H -	C ₃ H ₅	C11H19N5O3	69,9
OCH ₃	CH ₃	Н	изо-С ₃ Н ₇	C ₁₂ H ₂₁ N ₈ O ₃	70,1
1		- 1			16.5

[•] Разложение.

	Анализ, °/о								
_	N		S		С		Н		
Т. пл., °С	Адено	найдено вычис- лено		вайдено вычис- лено		найдено вычис- лено		найдено вычис- лено	
	<u> </u>	# B #	88	1 2 2	E E	186	Ha	BE	
204*	27,67	27,45	_	_	_	-	_	_	
214-215*	25,86	26,02	_	_	49,20	49,07	7,05	7,06	
210*	24,35	24,73		4-5	50,80	50,88	7,50	7,42	
186—187	27,47	27,23	12,71	12,45	_	_	-	-	
180	25,93	25,83	12,41	11,80	× -	-	-	-	
129—130	25,00	24,54	12,01	11,22		-	5-	_	
62-63	23,48	23,41	11,28	10,70	_	_		_	
76-77	23,65	23,41	11,30	10,70	_	-	-	_	
94—95	22,11	22,36	10,75	10,22	-	-	-	-	
146—147	25,85	26,02	-	8-3	-	-	-	1-	
110—111	24,51	24,73	-	-	-	-	_		
				Dec.		47			

Через смесь 12 г (0,1 моля) гидрохлорида витрила а-аминоизомасляной кислоты и 48 г метанола пропускают сухой хлористый водород до полного насыщения и смесь кипятят на водяной бане в течение 2 часов, охлаждают до комнатной температуры, опфильтровывают выпавший хлористый аммоний, фильтрат оставляют в холодильнике 20—24 часа и еще раз отфильтровывают. После удаления спирта в слабом вакууме осталок неоколько раз обрабатывают абсолютным эфиром, затем сухим вцетоном. Выпавший осадок гидрохлорида метилового эфира а-аминоизомасляной кислоты отсасывают и высушивают на воздухе. Выход 10 г (70%), т. пл. 180—81° (по данным литературы [5], т. пл. 183°).

Аналогично получен гидрохлорид отилового эфира α-аминоизомасляной кислоты. Выход 75%, т. пл. 133°.

2,4-Дихлор-6-а-метил-а-карбалкоксиэтиламино-симм-триазины (VIII—IX). Қ омеси 3,7 г (0,02 моля) хлористопо цианура и 3 г (0,02 моля) гидрохлорида метилового эфира α-аминоизомасляной кислоты в 10 мл ацетона при —5° медленно, по каплям добавляют 1,6 г (0,04 моля) едкото натра, раствореннюго в 8 мл воды. Смесь перемешивают в течение часа, затем при комнатной температуре 15 минут, после чего выливают в 150 мл холодной воды. Выпавший осадок отфильтровывают и высушивают на воздуже. Выход 4,6 г (80,3%), т. пл. 1/16—17°. Найдено %: N 21,50: Cl 27,01. СвН₁оСl₂Н₄О₂. Вычислено %: N 21,43: Cl 26,79.

Аналогично получен 2,4-дихлор-6-а-метил-а-карбэтоксиэтиламиносимм-приазин. Выход 80%, т. пл. 87—88°. Найдено %: N 20,45; Cl 25,76. C₀H₁₂Cl₂N O₂. Вычислено %: N 20,17; Cl 25.44.

2-Хлор-4-алкил (диалкил) амино-6-а-метил-а-карбалкок сиэтиламиносимм-триазины (X—XVII). К смеси 0,02 моля 2,4-дихлор-6-а-метил-акарбалкок сиэтиламино-симм-триазина в 15 мл ацетона, 0,02 моля гидрохлорида амина при охлаждении ледяной водой добавляют 0,04 моля епкого напра, растворенного в 7 мл воды. Смесь напревают на водяной бане в течение 3 часов при 50—60° и затем вливают в 200 мл воды; выпавший осадок отфильтровывают и высущивают на воздухе. Константы полученных соединений приведены в табл. 2.

2-Метокси-4-алкиламино-6-α-метил-α-карбалкоксиэтиламино-симмтриазины (XXIII, XXIV). К алкоголяту, полученному из 0,005 г-ат наприя и 5 мл абс. метанола, прибавляют 0,005 моля 2-хлор-4-алкиламино-6-αметил-α-карбалкоксиэтиламино-симм-приазина. Смесь при перемешивзнии кипятят 2 чака, оттоняют метанол, приливают 10 мл воды, экстрагируют эфиром, высушивают над безводным сернокислым магнием и после удаления эфира выпавшие кристаллы перекристаллизовывают из 35%ного этанома (табл. 1).

2-Метилтио-4-алкил (диалкил) амино-6-а-метил-а-карбалкоксиэтилимино-симм-триазины (XVIII—XXII). К раствору 0,01 моля 2-хлор-4-алкил (диалкил) амино-6-а-метил-а-карбалкокоиэтиламино-симм-триазина ч 30 мл метилового спирта при перемешивании добавляют 0,012 моля тиомочевины. Смесь напревают при температуре кипения метанола в течение 3 часов. Затем охлаждают до 50° и при переме: шивании добавляют

Таблица 2

R	R'	R#	Молекулярная формула	Выход, °/о	Т. пл., °С	Аналяз, °/0			
						N		Cl	
						найдено	вычис-	найдено	вычис-
СН3	н	н	C ₈ H ₁₂ CIN ₅ O ₂	70,4	179—180	24,47	24,44	14,73	14,46
C ₂ H ₅	Н	Н	C,H,CIN,O,	80,9	163—164	27,29	27,00	14,09	13,68
CH ₃	Н	C ₂ H ₅	C10H16CIN5O2	96,6	182—183	25,75	25,59	12,63	12,98
C ₂ H ₅	Н	C ₂ H ₅	C11H18CIN6O2	89,0	119	24,15	24,34	12,06	12,31
СН	Н	изо-С ₃ Н ₇	C11H18CIN5O2	97,1	166—167	24,70	24,35	14,63	14,34
C ₂ H ₅	Н	изо-C ₃ H ₇	C12H20CIN5O2	87,0	133	23,39	23,22	11,91	11,77
CH ₃	C,H,	C ₂ H ₅	C12H20CIN5O2	90,2	110—111	24,90	23,22	12,05	11,77
C ₃ H ₅	C ₂ H ₅	C ₂ H ₅	C ₁₃ H ₂₂ CIN ₅ O ₂	90,3	46—47	22,33	22,53	11,21	11,25

0,02 моля едкого напра, растворенного в 3 мл воды. Смесь кипятят еще час, охлаждают до 50—55° и при этой температуре добавляют 0,012 моля диалкилсульфата, после чего реакционную смесь кипятят час, охлаждают до 25° и добавлением холодной воды осаждают продукт, который отфильтровывают, высущивают в вакуум-эксикаторе над хлористым кальцием. Константы полученных соединений приведены в табл. 1.

ՊԵՍՏԻՑԻԴՆԵՐԻ ՍԻՆԹԵԶ

2-ՄԵԹԻԼՄԵՐԿԱՊՏԱ (ԱԼԿՕՔՍԻ) -4-ԱԼԿԻԼ (ԴԻԱԼԿԻԼ) ԱՄԻՆԱ-6-ԿԱՐԲԱԼԿՕՔՄԻ-_{ՀՀ}--ՄԵԹԻԼԷԹԻԼԱՄԻՆԱ-ՍԻՄ–ՏՐԻԱԶԻՆՆԵՐ

પ. પ. જાપાયામકારા હ કે. પ. પ્રપાદમાઇ

α-ԱմինաիզոկարագաԹԹվի նիտրիլի քլորաջածնական աղի ալկահոլիզով սինթեզված են α-ամինաիզոկարագաԹԹվի ալկիլային էսթերների քլորաջրած-նական աղեր, որոնք հիմքի ներկայությամբ ցիանուրի քլորիդի հետ փոխազ-, դելիս առաջացնում են 2,4-րիքլոր-6-α-կարբալկօքսի-α-մեթիլէթիլամինա-ոիմ-տրիազիններ։ Վերջիններս հիմքի ներկայությամբ ամինների հետ փոխազդելիս առաջացնում են 2-քլոր-4-α-ալկիլ(դիալկիլ)ամինա-6-α-կարբալկօքսի-α-մե-Թիլէթիլամինա-սիմ-տրիազիններ։

Ստացված միացությունները Նատրիումի ալկահոլատի հետ փոխազգմամբ վերածվել են ալկօքսի ածանցյալների, իսկ թիոմիզանյութի հետ համապատասխան թիուրոնիումային աղերի, որոնց ճեղքմամբ և հետագա մեթիլմամբ ստացվել են 2-մերկապտասծանցյալներ։

PESTICIDE SYNTHESIS

2-METHYLMERCAPTO(ALKOXY)-4-ALKYL(DIALKYL)AMINO-6α-CARBALKOXY-α-METHYLETHYLAMINO-symm-TRIAZINES

V. V. DOVLATIAN and F. V. AVETISSIAN

By the interaction of α-aminoisobutyric ester hydrochlorides with cyanuric chloride 2,4-dichloro-6-α-carbalkoxy-α-methylethylamino-symmtriazines have been prepared. Reaction of the latters with amines produces 2-chloro-4-alkyl(dialkyl)amino-6-α-carbalkoxy-α-methylethylamino-symm-triazines. Interaction of these substituted triazines with thiourea and alcoholates leads correspondingly to 2-methylmercapto- and 2-alkoxy derivatives.

ЛИТЕРАТУРА

- Н. Н. Мельников, Ю. А. Баскаков, Химия пестицидов и регуляторов растемий, Госхимиздат, М., 1962, стр. 667.
- 2. Ю. А. Баскаков, Н. Н. Мельников, Химия в сельском хозяйстве, 1, 46 (1968).
- 3. H. Gysin, E. Knüsli, Advances in Pest. Control Research, 73, 2981 (1960).
- 4. В. В. Довлатян, Ф. В. Аветисян, Арм. хим. ж., 25, 880 (1972).
- 5. Словарь орг. соед. ИЛ, М., 1, 1949, стр. 91.