2 Ц 3 Ч Ц Ч Ц Ъ Р Т Р Ц Ч Ц Ъ Ц Т U Ц Ч Р Р АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXV, № 10, 1972

НЕОРГАНИЧЕСКАЯ II АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 541.8+543.363

иоследование растворимости в системе Na₂SiO₃—Na₅P₃O₁₀—H₂O При 25°

М. Г. МАНВЕЛЯН, В. Д. ГАЛСТЯН, Э. А. САЯМЯН и А. Г. АГАХАНЯН Институт общей и неорганической химии АН Армянской ССР (Ереван) Поступило 10 XII 1971

Изучена растворимость в системе $Na_3SiO_3-Na_5P_3O_{16}-H_2O$ при 25°. Установлено, что в системе кристаллизуются твердые фазы $Na_3SiO_3\cdot 9H_2O$ и $Na_5P_3O_{10}\cdot 6H_2O$. Составы твердых фаз подтверждены термографическим и кристаллооптическим исследованием.

Рис. 3, табл. 1, библ. ссылок 6.

За последнее десятилетие фосфорсодержащие соединения нашли разнообразное применение в промышленности, в частности, в качестве поверхтностно-активных веществ (ПАВ) в моющих композициях. Имеется целый ряд зарубежных и отечественных патентных данных об их применении для приготовления синтетических моющих средств [1, 2, 3].

Исследования в области применения водорастворимых фосфорсодержащих ПАВ в синтетических моющих средствах (СМС) ограничены.

Поскольку, согласно литературным данным, многокомпонентные моющие средства содержат значительный процент силикатов щелочных металлов, представляет интерес исследование систем, содержащих моющие композиции, с целью выявления комплексного сырья.

 1 В настоящей статье приводятся результаты исследования взаимодействия $Na_{2}SiO_{3}$ и $Na_{5}P_{3}O_{10}$ в водном растворе с целью выяснения состава образующихся соединений.

Известны две безводные кристаллические формы триполифосфата натрия—высокотемпературная-1 и низкотемпературная-II. Кроме того, существует кристаллический гексагидрат $Na_5P_3O_{10}\cdot 6H_2O$ [4,5,6], причем растворимость безводного триполифосфата выше, чем гексагидрата.

В качестве исходных продуктов были использованы гидрометасиликат натрия и безводный триполифосфат натрия марки «ч.д.а.» в виде насыщенных растворов и установлены ячейки, исходя из различных их отношений.

Система исследовалась методом установления равновесия в термостате при 25°. Равновесие, контрюлируемое составом жидкой фазы, устанавливалось в течение сутск, после чего осадок отделялся от фильтрата. Осадок и фильтрат подвергались анализу: на SiO₂—осаждением соляной кислотой в виде H₂SiO₃ с последующим прокаливанием при 1000°, на P_2O_5 —в виде $Mg_2P_2O_7$ осаждением магнезиальным методом и на Na^+ —пламенно-фотометрическим методом. Осадки так же подвергались кристаллооптическому и термографическому исследованиям. Состав осадков устанавливался методом остатков Шрейнемакерса. На основании полученных данных построена диаграмма растворимости.

Изотерма 25°. Как видно из рис. 1 и таблицы, диаграмма проста по своему виду и состоит из двух полей кристаллизации: поля девятиводного метасиликата натрия, ограниченного содержанием Na_2SiO_3 —17,46—25,17, $Na_5P_3O_{10}$ —1,04—6,33 вес. % в жидкой фазе, и поля гексатидрата триполифосфата натрия, ограниченного содержанием Na_2SiO_3 —26,17—0,325, $Na_5P_3O_{10}$ —6,33—17,64 вес. %. Эвтонической точке совместной кристаллизации отвечает состав: Na_2SiO_3 —25,17; $Na_5P_3O_{10}$ —6,33 вес.% в жидкой фазе.

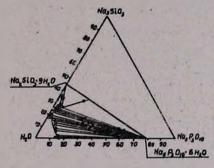


Рис. 1. Диаграмма растворимости системы Na₂SiO₃—Na₅P₃O₁₀—H₂O при 25°.

Рис. 2. Микрофотограммы осадков: а — из области $Na_2SiO_3 \cdot 9H_2O$; б — из области $Na_5P_3O_{10} \cdot 6H_2O$; в — эвтоначеская точка.

Предполагаемые возможные твердые фазы типа твердых раствороз или двойных солей, которые мотли явиться комплексным сырьем мотоцих композиций, не осаждаются. С целью подтверждения ооставов твердых фаз были сняты дериватограммы и микрофотограммы осадков, отвечающих областям Na₂SiO₃·9H₂O и Na₅P₃O₁₀·6H₂O. Так, сняты микрофотограммы осадков 2, 5 и 118 (рис. 2). Точка 5 отвечает эвтонической точке

совместной кристаллизации и на микрюфотопрамме явственно наблюдаются кристаллы Na_2SiO_3 - $9H_2O$ и $Na_5P_3O_{10}$ - $6H_2O$.

Данные системы NP2SIO3-Na5P3O10-H3O при 25

Таблица

Coc	га, вес.	Состав осадка, вес. 0/0						611 - 3			
Na ₂ O	SIO,	P ₃ O ₅	Na, SiO,	Na ₅ P ₃ O ₁₀	Na ₃ O	SIO,	P,0,	Na ₂ SiO ₃	Na ₅ P ₃ O ₁₀	Твердая фаза, я	
7,60	0,16	10,20	0,325	17,64	26,25	0,23	33,80	0,467	58,50	41,03	Na ₅ P ₃ O ₁₀ ·6H ₂ O
9,30	8,60		17,46			17,48	0,60	36,48	1,04	63,48	Na ₂ SiO ₃ ·9H ₂ O
15,58	13,50	2,30	27,45	3,98	18,74	17,20	1,30	34,92	2,41	62,64	15.55
16,09	12,95	2,40	26,40	4,15	18,23	16,60	1,55	33,70	2,68	63,62	
13,38	12,40	3,66	26,17	6,33	17,65	16,58	10,54	31,63	18.23	50,14	Na ₂ SiO ₃ ·9H ₂ O+ + Na ₅ P ₃ O ₁₀ ·6H ₂ O
11,66	11,37	2,70	25,08	4,67	20,27	4,06	31,90	8,37	55,78	35,85	Na ₅ P ₃ O ₁₈ .6H ₂ O
12,76	12,16	1,90	24,68	3,28	21,60	8,50	17,70	17,26	30,62	52,13	3 .
13,55	11,80	1,90	23,95	3,29	20,56	7,97	16,60	16,18	28,72	55,10	•
11,68	10,90	0,66	22,10	1,14	20,18	6,91	17,90	14,02	30,97	55,01	
12,15	10,98	1,35	22,30	1,99	19,45	5,90	18,20	12,98	31,52	55,50	
10,50	9,50	1,00	19,28	1,72	19,78	5,89	18,80	11,96	32,51	55,53	78 1 T.
10,65	9,55	1,10	19,34	1,94	20,25	4,70	21,10	9,54	36,51	53,92	•
9,86	8,86	1,00	17,99	1,73	17,82	6,07	15,81	12,32	27,37	60,31	
9,86	7,42	3,00	15,06	5,21	19,71	4,70	20,40	9,54	35,27	54,19	
9,86	6,60	4,20	13,40	7,26	19,30	4,30	20,40	8,73	35,27	56,00	

1,30,35,53

2,20,26,30

2,30 24,10

0,47 16,00

0.33 18.40

4,74 11,51

9,30

8,37

8,10

6,93

6,35

5,67

3,80

3,50

0,60

0.30

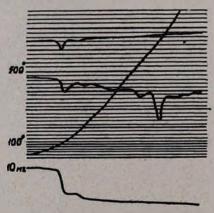
8,20 27,13

6, 12 7,70 10,5921,46

6,20 6,10 10,70 19,98

8,65 1,22 14,96 12,15

8,30 0,61 1,43 13,70


2,68 61.05 36,27

4,46 45,50 51,04

4,67 41,71 53,62

0,95 27,67 71,38

0.67 31.82 67.51

Deputamasparma Na, P, O., 6H, O. Habacha 1,7894 2

Рис. 3. Дериватограмма Na₅P₂O₁₀·6H₂O

Из дериватограммы Na₅P₃O₁₀-6H₂O (рис. 3) следует, что потеря кристаллизационной воды характеризуется на ДТА двумя эндотермами с максимумами при 100—120° и 200—220°. Эндоэффект при 500—520° связан, по-видимому, с перегруппировкой кристаллической решетки после удаления воды. Сухая соль плавится при 622°, что также проявляется из кривой ДТА ярко выраженным эндоэффектом. На кривой потери веса при этих же температурах наблюдаются эффекты. Так, потеря веса от навески в 1,7894 г составляет 0,042 г. Из этого количества основная часть (0,034 г) связана с удалением воды, причем 5 молекул удаляются уже при 100—120°, оставшаяся молекула—при 200—220°. Потеря веса при 622—900° в количестве 0,004 г, по-видимому, обусловлена частичным разложением соли после плавления (622°).

Մ. Գ. ՄԱՆՎԵԼՑԱՆ, Վ. Գ. ԳԱԼՍՏՏԱՆ, Է. Ա. ՍԱՅԱՄՅԱՆ և Ա. Գ. ԱԳԱԽԱՆՏԱՆ

Ամփոփում

Հետազոտված է 25°-ում $\mathrm{Na_2SiO_3-Na_5P_3O_{10}-H_2O}$ համակարդում լուժելիու Fin

Հաստատված է, որ համակարգում կան հետևյալ բլուրեղացման դաշտերը՝ $Na_2SiO_3 \cdot 9H_2O$ և $Na_5P_3O_{10} \cdot 6H_2O$, Դինդ ֆազերի բաղադրու $\pmb{\beta}$ լունները հաստատված են $\pmb{\beta}$ երմոգրաֆիական և բլուրեղօպտիկական հետազոտու $\pmb{\beta}$ լուներըն և հետանում և բլուրեղություն և հետանում և հետանում և հետանում և հետանում և հետանում և հետևյան և հետևյան

STUDIES OF THE SOLUBILITIES IN THE SYSTEM Na₂SiO₂-Na₅P₃O₁₀-H₂O AT 25°

M. G. MANVELIAN, V. G. GALSTIAN, E. V. SAYAMIAN and A. G. AGAKHANIAN

The solubility in the system $Na_2SiO_3-Na_5P_3O_{10}-H_2O$ has been studied at 25° by thermographical and crystalooptical methods. It has been shown that crystalization of $Na_2SiO_3 \cdot 9H_2O$ and $Na_5P_6O_{10} \cdot 6H_2O$ occurs.

ЛИТЕРАТУРА

- 1. Пат. США 1050881.
- 2. C. A. 55 crp. 522 (1961).
- 3. Ф. Н. Неволин, В. Г. Барыльник, Т. Г. Пиписева, А. Н. Семенова, Изобретения, промышленные образцы, товарные знаки, № 7, 79, 1967.
- 4. Ван Везер, Фосфор и его соединения, ИЛ, М., 1962.
- 5. E. P. Partridge, V. Hicks, Q. V. Smith, J. Am. Chem. Soc., 63, 454 (1941).
- 6. G. W. Morey, E. Ingerson, Am. J. Sci., 242, 1 (1944),