XXV, № 1, 1972

КРАТКИЕ СООБЩЕНИЯ

УДК 547.821+547.91

модификация структур алкалоидов

VI. НЕКОТОРЫЕ N-ЗАМЕЩЕННЫЕ АНАБАЗИНЫ

Л. С. АРУТЮНЯН, А. С. ЦАТИНЯН, О. М. АВАКЯН, С. Г. КАРАГЕЗЯН, В. Г. САРАФЯН н. В. А. МНАЦАКАНЯН

> Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

> > Поступило 20 V 1971

С целью испытания биологических свойств и в продолжение синтезов на основе алкалоида анабазина получен ряд анабазиновых амидов алкокси-замещенных фенилуксусных кислот (I) и некоторых двуосновных кислот (II). Восстановлением амидов I и II алюмогидридом лития получены замещенные фенилэтиланабазины (III) и полиметиленбисанабазины (IV).

Синтез амидов I и II осуществлен реакцией анабазина с хлорангидридами соответствующих кислот.

Изучение адренолитических и симпатолитических свойств гидрохлоридов соединений III и ранее [1] синтезированных N-(алкоксизамещенных бензил) анабазинов показало отсутствие адренолитической активности при наличии кратковременного симпатолитического действия. Несколько более длительное симпатолитическое действие оказывают гидрохлориды N-(3-пропоксибензил) - и N-(2-пропоксифенилэтил) анабазинов.

Исследованы также противотуберкулезные свойства амидов I и II и N-(алкоксизамещенных бензоил) анабазинов [1]. Вся группа этих соединений лишена какой-либо заметной противотуберкулезной активности. Рост туберкулезных штаммов подавлялся только значительными концентрациями препаратов порядка 100—500 умл.

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & CH_2 \\ & & CH_2 \\ & & III \\ & & R \\ \end{array}$$

Таблина

R	n	Амиды I и II			Соединения III и IV			
		[a] ²²	Rf	выход, ⁰ /0	т. кип., °С/ <i>мм</i>	$[\alpha]_D^{22}$	R _f	выход, ⁰ / ₀
4-метоксифенил	_	88	0,48	93,3	220—225/8	—53	0,67	66,5
4-этоксифенил		-47	0,49	93,6	216-219/8	—55	0,70	61,9
4-пропоксифенил	-	—50	0,42	88,6	220-224/8	-4 9	0,79	64,9
4-изопропоксифенил		-51	0,53	82,6	219-223/8	-63	0,79	67,2
4-бутоксифенил	-	-46	0,53	79,9	221-225/8	—59	0,75	60,3
3-метоксифенил	_	—70	0,72	91,7	204—207/2	-65	0,86	49,3
3-этоксифенил	-	—65	0,72	90,4	210-213/2	—67	0,87	51,7
3-пропоксифенил	_	—67	0,71	76,4	215-216/2	—78	0,85	58,3
3-изопропоксифенил	_	—60	0,74	76,6	214-216/2	—75	0,88	56,7
3-бутоксифенил	 _	—72	0,79	93,6	208-210/2	—70	0,86	52,9
2-метоксифенил	_	-58	0,73	63,9	201-204/2	—70	0,78	50,1
2-этоксифенил	_	-60	C.75	64,1	195-203/2	_74	0,81	47,7
2-пропоксифенил	_	60	0.74	68,4	205—209/2	—71	0,80	48,1
2-изопропоксифенил	l —	-58	0,73	67,3	220-223/4	-59	0,78	46,7
2-бутоксифенил	-	-66	0,74	69,1		-4 5	0,79	45,0
_	3	—75	0,49	90,2		_	_	
_	4	-129	0,50	89,9	_	—78	0,61	53,5
_	5	85	0,48	86,4	_	69	0,64	47,3
_	6	-72	0,47	84,2	_	—81	0,65	51,9
_	7	80	0,48	76,9	_	-71	0,66	48,6
_	8	—94	0,49	83,1	_	_	_	

Экспериментальная часть

Тонкослойная хроматография (TCX) веществ проводилась на окиси алюминия (активность II) в системе хлороформ—этанол (30:1), проявитель—пары йода. ИК спектры сняты в хлороформном растворе на опектрофотометре UR-10. Оптическая активность определялась на поляриметре CM в хлороформном растворе.

Чистота и индивидуальность соединений I—IV проверена ТСХ, ИК, спектрами и получением удовлетворительных данных при выборочном элементном анализе.

Изменение адренолитической и симпатолитической активности проводилось на изолированном семявыносящем протоке крысы. Препараты испытывались в концентрации $1 \cdot 10^{-5}$ гм/л.

Туберкулостатические свойства изучались на яично-агаровой среде Герольда на четырех штаммах—Асаdemia, БЦЖ, Н₂₂R₂ и 4d.

Амиды I и II. Получены по методу [1]; представляют собой густые светлые масла, индивидуальные на TCX, с R_f , отличными от R_f анабазина (0,36—0,38). В ИК спектре I и II имеется полоса в интервале 1640-1660 см⁻¹ и отсутствует полоса активного водорода.

Выходы и константы приведены в таблице.

Соединения III и IV. Получены восстановлением I и II по [1]. В случае получения IV на 0,01 моля II расходовали 0,03 моля алюмогидрида лития. Соединения III очищались фракционированием в вакууме, а IV—хроматографированием на колонке с окисью алюминия (активность II), элюэнт—абсолютный эфир.

Соединения III и IV—светложелтые густые масла, проявляющиеся на ТСХ единичными пятнами. В ИК спектрах отсутствуют полосы амидного карбонила и активного водорода.

Гидрохлориды соединений III и IV легко образуются в виде трудно кристаллизирующихся густых гигроскопичных масел при смешении эфирных растворов хлористого водорода и соединений III и IV.

ЛИТЕРАТУРА

1. Л. С. Арутюнян, М. А. Кайтанджян, В. А. Мнацаканян, А. Л. Мнджоян, Арм. хим. ж., 23, 923 (1970).