XXV, № 1, 1972

УЛК 541.69+542.91+547.435+547.572

СИНТЕЗ И ФАРМАКОЛОГИЧЕСКИЕ СВОИСТВА НЕКОТОРЫХ АМИНОКЕТОНОВ И АМИНОСПИРТОВ

А. А. АРОЯН, Р. К. АНТОНЯН, О. М. АВАКЯН и А. В. ПОГОСЯН

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 6 VI 1969

Взяимодействием о-алкоксихлорбензолов с хлористым ацетилом в присутствии безводного хлористого алюминия синтезированы 3--хлор-4-алкоксиацетофеноны, которые реакцией Манниха переведены в 3-хлор-4-алкокси-β-диметиламинопропиофеноны (I). Восстановление последних алюмогидридом лития приводит к 1-(3'-хлор-4'-алкоксифенил)-3-диметиламинопропанолам (II).

Фармакологическое исследование гидрохлоридов оснований I и II показало, что они лишены α- и β-адренолитических свойств, но проявляют симпатолитическое действие, которое усиливается с увеличением алкоксильного радикала.

Рис. 1, табл. 5, библ. ссылок 4.

Структура норадреналина и ацетилхолина, являющихся медиаторами нервного возбуждения, служила исходной моделью для создания соединений, оказывающих выраженное влияние на адренергические и колинергические процессы [1]. Нами синтезирован ряд 3-хлор-4-алкокси-β-диметиламинопропиофенонов (I) и 1-(3'-хлор-4'-алкоксифенил)-3-диметиламинопропанолов-1 (II), являющихся аналогами норадреналина.

RO CH₂CH₂N(CH₃)₂

$$RO CHCH2CH2N(CH3)2
OH$$

$$RO CHCH2CH2N(CH3)2
OH
$$R = CH3, C3H5, C4H5$$$$

Синтез I и II проведен, исходя из *о*-алкоксихлорбензолов, полученных с 75—85% выходами взаимодействием *о*-хлорфенола, алкилгалогенида и спиртового раствора едкого натра [2]. Действием на алкоксихлорбензолы хлористым ацетилом в присутствии безводного хлористого алюминия с 65—75% выходами получены 3-хлор-4-алкоксиацетофеноны, представляющие собой перегоняющиеся в вакууме без разложения кристаллические продукты. Последние охарактеризованы в виде оксимов. Положение ацетильной группы установлено на примере 3-хлор-4-метоксиацетофенона окислением перманганатом калия в известную 3-хлор-4-алкоксибензойную кислоту.

Аминокетоны I синтезированы из 3-хлор-4-алкоксиацетофенонов реакцией Манниха—действием гидрохлорида диметиламина и формальдегида. Продукты реакции получаются в виде гидрохлоридов. Хотя свободные основания и устойчивы в эфирном растворе, перегонять их в вакууме не удается. При этом. как показал Манних [3] и на других аналогичных примерах, основное количество аминокетонов I разлагается с образованием З-хлор-4-алкоксифенилвинилкетонов.

Аминоспирты II синтезированы восстановлением эфирных растворов аминокетонов I алюмогидридом лития.

$$\begin{array}{c|c} CI & RX, NaOH & RO & CH_0COCI \\ \hline & RO & CH_0COCI \\ \hline & RO & COCH_3 & (CH_0)_8NH-HCI, CH_5O \\ \hline & I & LIAIH_4 \\ \hline & II \\ \hline \end{array}$$

В отличие от аминокетонов I аминоспирты II перегоняются в ваку уме без разложения.

Фармакологические свойства гидрохлоридов I и II исследовались в опытах на наркотизированных гексеналом кошках (в дозах 1 и 10 мг/кг внутривенно) и на изолированном семявыносящем протоке крысы (в концентрации I·10 —5). О симпатолитической и адренолитической активности судили по уменьшению ревкции мигательной перепонки кошки и семявыносящего протока крысы на электрические раздражения постганглизпарных симпатических нервов и на введение адреналина и изадрина.

В испытанных дозах препараты не оказывают существенного влияния на дыхание, кровяное давление и тонус мигательной перепонки кошки. Они не изменяют заметно реакцию мигательной перепонки и кровяного давления на адреналин и на изадрин т. е. лишены α - и β -адренолитических свойств. Согласно данным опытов на семявыносящем протоке крысы, соединения обеих групп проявляют симпатолитическое действие, которое усиливается с увеличением алкоксильного радикала (табл. 1). В опытах на кошках значительная симпатолитическая активность выявлена у гидрохлорида 3-хлор-4-этокси- β -дяметиламинопропиофенона (рис.).

7аблица / Симпатолитическое действие препаратов в концентрации $1 \cdot 10^{-5}$ г/мл

№ препај (гидрохлог аминокето табл. 4	иды нов,	Через 15 минут	Через 90 минут	№ препарата (гидрохлориды аминоспиртов, табл. 5)	Через 15 минут	Через 90 минут
1	*	44	60	5	6	37
2		36	67	6	 4 8*	0
3		74	81	7	55	52
4		90	85	8	86	78

[•] Это соединение в отличие от других вызывало увеличение реакции органа на электрическое раздражение постганглионарных симпатических нервов.

Цифры показывают уменьшение сокращений семявыносящего протока крысы в % к исходным сокращениям, вызванных трансмуральным раздражением органа прямоугольными электрическими импульсами с частотой 20 umn/cek, длительностью 0,1 мсек в течение 1 сек, через кажлые 1.5 мин.

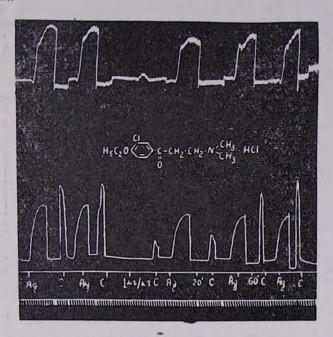


Рис. Опыт на наркогизированной гексеналом кошке. Сверху вниз: запись кровяного давления, тонуса мигательной перепонки, отметки времени (5 сек). Препарат вводился внугривенно в дозе 1 мг/кг; Ад — введение адреналина в дозе 5 мкг. С — раздражение шейного постганглионарного симпатического нерва.

Экспериментальная часть

2-Хлор-4-алкоксиацетофеноны. К 0,4 моля 2-алкоксихлорбензола при перемешивании и охлаждении льдом добавляют 35 г безводного хлористого алюминия, а затем, поддерживая температуру смеси не выше 4—5°, в течение 1 часа приливают 23,5 г (0,3 моля) хлористого ацетила. Реакционную смесь перемешивают 1 час, нагревают на водяной бане в течение 3 часов при 40° и оставляют на ночь. Затем охлаждая льдом, при перемешивании вносят в колбу 100—150 г колотого льда и выделившееся масло экстрагируют эфиром, экстракты высушивают сульфатом натрия и после отгонки растворителя остаток перегоняют в вакууме. После небольшой фракции исходного о-алкоксихлорбензола перегоняются 3-хлор-4-алкоксиацетофеноны, которые при стоянии кристаллизуются (табл. 2).

Оксимы 3-хлор-4-алкоксиацетофенонов. К раствору 0,1 моля замещенного ацетофенона и 10,4 г (0,15 моля) солянокислого гидроксиламина в 50 мл 75%-ного этанола при встряхивании и охлаждении водой прибавляют 20 г (0,5 моля) измельченного в порошок едкого натра. Затем реакционную смесь кипятят в течение 5—10 минут. По охлаждении осторожно приливают 50 мл концентрированной соляной кислоты и 400 мл воды, выпавший осадок отсасывают, тщательно промывают водой и сушат (табл. 3).

Таблица 2

	0′0					Ан	8 4	л и з 0/0			
		_1			С		Н		N		
R		Т. кип., °С/ <i>ли</i>	Т. пл., °С	Молекулярная формула	오	1 4	91	7.	011		
	Выход,	Сумм		40hm)	пайдено	B6411C	найдено	вычис-	найдено	нычис	
	Bh				13	19 P.	на	BPN	=	нычи	
				211.00	50.00	1-0	- 0-				
CH3	77,6	150 —151/3	74 –75	C ₉ H ₉ ClO ₂	59.00	58,55	5,25	4,91	18,90	19,20	
C ₂ H ₅	65,3	138-139/1	62-63	C ₁₀ H ₁₁ ClO ₂	60,79	60,46	5,95	5,58	18,03	17.84	
C ₃ H ₇	63,6	141-142/1	54-55	C11H13CIO2	62,48	62, 12	6,03	6, 16	16,50	16,67	
C.H.	70,6	148-150/1	5759	C ₁₂ H ₁₅ CIO.	63,52	63,57	6,93	6,66	15,75	15,63	
		- 41-12									

Таблица 3

		11-		11	Ан	ал:	и э,	°/o	
	0/0	_				H	1	1	
R	Выход, о	Т. пл, °С	Молекулярная формула	найдено	вычис-	пайдено	вычис-	папдено	вычис-
СН	88,5	107—109	C.H.OCINO	54.50	54,12	5,06	5,04	7,00	7,01
C ₂ H ₅	92,2	119—120	C ₁₀ H ₁₂ CINO ₂	56,47	56,21	5,93	5.66	6,15	6,55
C _a H ₇	91,2	94-95	C11H14CINO2	58,36	58,02	6,25	6,19	6,51	6,15
·C ₄ H ₉	92,3	104 —105	C _{12H18} CINO ₂	59,24	59,62	6,41	6,67	5,63	5,79

Окисление 3-хлор-4-метоксиацетофенона. К смеси 9,2 г (0,05 моля) 3-хлор-4-метоксиацетофенона, 8,4 г (0,15 моля) едкого кали и 150 мл воды при энергичном перемешивании и нагревании на водяной бане в течение 2 часов небольшими порциями прибавляют 21 г перманганата калия. Перемешивание и нагревание продолжают еще 4 часа. По охлаждении фильтруют, фильтр промывают 10—15 мл воды, затем 20—30 мл

эфира. Отделяют эфирный слой, водный подкисляют соляной кислотой и отсасывают полученные кристаллы. Выход 6,5 г (70%), т. пл. 213—214°.. По литературным данным [4] т. пл. 3-хлор-4-метоксибензойной кислоты 214°.,

Гидрохлориды 3-хлор-4-алкокси-β-диметиламинопропиофенонов (I). Смесь 0,25 моля замещенного ацетофенона, 26 г (0,32 моля) солянокислого диметиламина, 9,9 г (0,33 моля) параформа, 40 мл 95%-ного этанола и 1 мл концентрированной соляной кислоты кипятят в течение 3 часов, затем оставляют на ночь в холодильнике. Полученные кристаллы отсасывают, промывают эфиром и перекристаллизовывают из абсолютного этанола (табл. 4).

Таблица 4

Ta		0/0			Анализ, 0/0							
ара			т	Manager 1		C		Н		N		N
		Выход,		Молекулярная формула	найдено	вычис-	найдено	вычис- лено	найдено	вычис-	найдено	вычис-
-1	СН₃	66,8	188—189	C12H17CI2NO2	52,01	51,81	5,96	6,15	5,38	5,03	25,37	25,49
2	C ₂ H ₅	76,3	119-120	C13H19Cl2NO2	53,15	53,43	6,08	6,55	4,53	4,79	24,72	24,26
3	C ₃ H ₇	60,3	131—132	C14H21CI2NO2	55,03	54,90	6,70	6,91	5,01	4,57	23,46	23,15
4	C ₄ H ₉	80,0	121—122	C ₁₅ H ₂₃ Cl ₂ NO ₂	55,96	56,25	7,39	7,23	4,70	4,37	22,59	22,14

1-(3'-Хлор-4'-алкоксифенил)-3-диметиламинопропанолы. К раствору 0,05 моля гидрохлорида 3-хлор-4-алкокси-в-диметиламинопропанона в 50 мл воды приливают сначала 150 мл эфира, а затем при охлаждении водой — 50%-ный раствор едкого натра до сильнощелочной реакции. Отделяют эфирный слой, водный же 2—3 раза экстрагируют эфиром (по 50 мл) и экстракты тщательно высушивают над прокаленным сульфатом натрия. Полученный таким образом эфирный раствор аминокетона в течение 1 часа прикапывают к перемешиваемому раствору 6,4 г (0,17 моля) алюмогидрида лития в 200 ил абсолютного эфира. Реакционную смесь при перемешивании кипятят в течение 12-13 часов. Затем при охлаждении и перемешивании приливают 50-60 мл 10%-ного раствора едкого натра, декантируют эфирный слой, а осадок несколько раз промывают абсолютным эфиром. Эфирный экстракт высушивают над сульфатом натрия и после отгонки растворителя остаток перегоняют в вакууме (табл. 5). Гидрохлориды получают действием эфирного раствора хлористого водорода на аминопропанолы в среде абсолютного эфира.

№ препарата	R	Buxoa, º/o	Т. кип., °С/мм	Молекулярная формула	d ²⁰
5	CH ₃	78,5	168—171/1	C ₁₃ H ₁₈ CINO ₂	1,1738
6	C ₂ H ₅	81,8	178-179/2	C13H20CINO2	1,1050
7	C ₃ H ₄	80,7	189-191/4	C14H22CINO2	1,0719
8	C ₄ H ₉	78,9	195—198/2	C ₁₅ H ₃₄ CINO ₂	1,0706
				1	

Таблица 5

CHCH3CH3N(CH3)3 OH

1	A	налн	3, 0/0	Т. пл. солей, °С			
-		CI	1	N			
n _D ²⁰	найдено	вычис-	найдено	вычис-	гидрэ- хлориды	йод- метилаты	
1,5440	14,50	14,54	5,56	5,74	95—96	118—120	
1,5272	13,42	13,75	5,21	5,43	120—121	_	
1,5209	13,30	13,05	5.25	5,15	105—107	97—98	
1,5182	12,09	12,40	5,17	4,90	122-123	-	

ՄԻ ՔԱՆԻ ԱՄԻՆԱԿԵՏՈՆՆԵՐԻ ԵՎ ԱՄԻՆԱՍՊԻՐՏՆԵՐԻ ՍԻՆԹԵԶ ԵՎ ՖԱՐՄԱԿՈԼՈԳԻԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

2. U. ZUPNBUL, P. R. ULBNIBUL, Z. U. ULUBBUL L U. J. ANGNUBUL

Udhahaid

Անջուր ալյումինիումի քլորիդի ներկայությամբ օ-ալկօքսիքլորբենզոլների և ացետիլքլորիդի փոխազդմամբ սինթեզված են 3-քլոր -4-ալկօքսիացետոֆենոններ, որոնք Մաննիխի ռեակցիայով վեր են ածված 3-քլոր-4ալկօքսի -β-դիմեթիլամինապրոպիոֆենոնների։ Վերջիններս լիթիումի ալլումահիդրիդով վերականգնված են մինչև 1-(3'-քլոր-4'- ալկօքսիֆենիլ)-3--դիմեթիլամինապրոպանոլները։

Ֆարմակոլոզիական հետազոոտությունները ցույց են տվել, որ սինթեզված ամինակետոնների և ամինասպիրտների հիդրոքլորիդները ցուցաբերում են սիմպատոլիտիկ ազդեցություն, որը ուժեղանում է ալկօքսիռադիկալի մեծացման հետ։

ЛИТЕРАТУРА

- N. V. Khromov-Bortsov, M. J. Michelson, Pharm. Rev., 18, 1051 (1966); D. J. Triggle, Chemical Aspects of the Autonomic Nervous System. Academ. Press., N. Y., 1965.
- 2. А. А. Ароян, Т. Р. Овсепян, Р. Л. Мелик-Оганджанян, В. В. Ледяев, Арм. хим. ж. 22, 406 (1969).
- 3. C. Mannich, D. Lammoring, Ber., 55, 3510 (1922).
- 4. Bl., 10, 176,