XXV. № 1, 1972

## НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 541.123.6+546.32+546.41

## ИССЛЕДОВАНИЕ ВЗАИМНО-ЧЕТВЕРНОЙ СИСТЕМЫ $K_2CO_3-CaCO_3-Ca(OH)_2-KOH-H_2O$ . IV

Г. О. ГРИГОРЯН, М. С. МОВСЕСЯН и Р. М. КИРАКОСЯН

Институт общей и неорганической химни АН Армянской ССР (Ереван) Поступило 11 VII 1969

Изучена изотерма растворимости системы Ca(OH)<sub>2</sub>—CaCO<sub>3</sub>—H<sub>2</sub>O при 95°. Установлено, что в изучаемой системе образования двойных солей не происходит, а в ввтонической точке совместно кристаллизуются Ca(OH)<sub>2</sub> и CaCO<sub>3</sub>.

Исследование диаграммы растворимости взаимно-четверной системы  $K_2CO_3$ — $CaCO_3$ — $Ca(OH)_2$ —KOH— $H_2O$  при 95° показало образование твердых фаз состава  $K_2CO_3 \cdot 2H_2O$ ;  $KOH \cdot H_2O$ ;  $Ca(OH)_2$ ;  $CaCO_3$  и двух видов двойных карбонатных солей кальция ( $K_2CO_3 \cdot CaCO_3$ ;  $K_2CO_3 \cdot CaCO_3 \cdot 2H_2O$ ).

Рис. 1, табл. 2, библ. ссылок 10.

Данные по растворимости взаимно-четверной системы  $K_2CO_3$ — $CaCO_3$ — $Ca(OH)_2$ —KOH— $H_2O$  в литературе нами не обнаружены. Некоторые сведения по каустификации поташных растворов известью приведены в работах [1—6].

Для исследования взаимно-четверной системы  $K_2CO_3-CaCO_3-Ca(OH)_2-KOH-H_2O$  ранее сыли изучены изотермы растворимости в системах:  $K_2CO_3-KOH-H_2O$ ;  $K_3CO_3-CaCO_3-H_2O$ ;  $KOH-Ca(OH)_2-H_2O$  [6]. Исследование скорости процесса каустификации, а также скоростей осаждения, фильтрации и промывки осадков по-казало, что высокая интенсивность процесса каустификации обеспечивается при  $90-95^\circ$  [6, 8].

В настоящей работе приводятся изотермы растворимости трехкомпонентной системы Ca(OH)<sub>2</sub>—CaCO<sub>3</sub>—H<sub>2</sub>O при 95° и на основании данных указанных систем построена и изучена диаграмма взаимно-четверной системы K<sub>2</sub>CO<sub>3</sub>—CaCO<sub>3</sub>—Ca(OH)<sub>2</sub>—KOH—H<sub>2</sub>O при 95°.

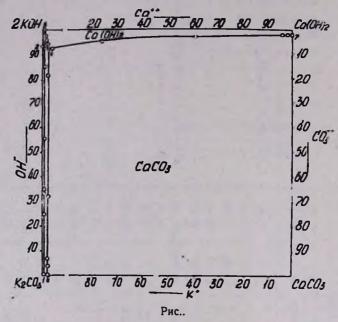
Диаграмма растворимости системы Ca(OH)<sub>2</sub>—CaCO<sub>3</sub>—H<sub>2</sub>O при 95°. Исследование велось по методике [6, 7]. Наличие Ca(OH)<sub>2</sub> и CaCO<sub>3</sub> в твердой фазе двухкомпонентных систем Ca(OH)<sub>2</sub>—H<sub>2</sub>O, CaCO<sub>3</sub>—H<sub>2</sub>O подтверждено в работах [9, 10]. Так как построение линии изотермы тройной системы представляет большую трудность из-за малой растворимости компонентов, нами найдена только эвтоническая точка. Для проведения опытов в дистиллированную воду добавлялись CaCO<sub>3</sub> и Ca(OH)<sub>2</sub> марки «х. ч.» с большим их избытком в твердой фазе. Состояние равновесия системы проверялось параллельными опытами. После оконча-

ния опыта пульпа фильтровалась и подвергалась раздельному анализу (осадок и фильтрат). В фильтрате определялись  $OH^-$  и  $CO_3^-$  титрованием 0,05 н соляной кислотой в присутствии индикаторов фенолфталеина и метилоранжа;  $Ca^{++}$  определялся объемным методом [6]. Для каждого анализа было употреблено 3+10 л насыщенного раствора по методике [2]. Количества  $CaCO_3$  и  $Ca(OH)_2$  рассчитаны по принципу связывания ионов в менее растворимые соли. Результаты опытов сведены в таблицу 1.

Таблица / Растворимость в системе Са(OH)<sub>3</sub>---CaCO<sub>3</sub>---H<sub>2</sub>O при 95°

| 7                     | Кидка                               | я фаз                                 | a                                   | Влаж                | сный о |                          |                                                                                     |  |
|-----------------------|-------------------------------------|---------------------------------------|-------------------------------------|---------------------|--------|--------------------------|-------------------------------------------------------------------------------------|--|
| вес. %                |                                     | моли на 1000 г<br>воды                |                                     |                     | %      |                          |                                                                                     |  |
| Ca(OH) <sub>2</sub>   | CaCO <sub>3</sub> ·10 <sup>-3</sup> | Ca(OH) <sub>3</sub> ·10 <sup>-2</sup> | CaCO <sub>3</sub> ·10 <sup>-2</sup> | Ca(OH) <sub>3</sub> | CaCO3  | Н <sub>2</sub> О по раз- | Твердая фаза                                                                        |  |
| 0,0760<br>0,0716<br>— | -<br>0,13<br>0,20                   | 1,080<br>0,968<br>—                   | 0,013<br>0,021                      | -<br>35,40<br>-     | 30,30  | 34,30<br>—               | Ca(OH) <sub>2</sub><br>Ca(OH) <sub>2</sub> + CaCO <sub>3</sub><br>CaCO <sub>3</sub> |  |

Учитывая незначительную растворимость компонентов в изучаемой тройной системе, для четкого изображения эвтонической точки линия изотермы построена в увеличенном масштабе. Как видим (табл. 1), в эвтонической точке E, соответствующей концентрации  $Ca(OH)_2$ — 0,0716 вес. % и  $CaCO_3$ —0,0013 вес. %, в твердой фазе совместно кристаллизуются  $Ca(OH)_2$  и  $CaCO_3$ . В изучаемой системе двойные соли отсутствуют.


Диаграмма растворимости взаимно-четверной системы  $K_2CO_3$ —  $CaCO_3$ — $Ca(OH)_2$ —KOH— $H_2O$  при 95°. При исследовании взаимно-четверной системы возникли экспериментальные трудности, обусловленные тем, что наибольшее число фаз на диаграмме сосредоточено в области концентрированных щелочных растворов. Выделяющиеся твердые осадки плохо отделялись от маточника; поэтому, помимо указанных методов, для идентификации твердых фаз был применен метод «остатков».

Исследование велось методом добавления к раствору, насыщенному двумя компонентами, третьего компонента и установления состава раствора, из которого начинает кристаллизоваться новая фаза. Выяснено, что при добавлении гидроокиси кальция в раствор, насыщенный  $K_2CO_3$  и КОН, образуется двойная карбонатная соль состава  $K_2CO_3$ -CaCO<sub>3</sub>-2H<sub>2</sub>O, а при добавке CaCO<sub>3</sub> образуется  $K_2CO_3$ -CaCO<sub>3</sub>. Результаты опытов приведены в таблице 2. На рисунке приведены области кристаллизации  $K_2CO_3$ -2H<sub>2</sub>O, ограниченные линиями, расположен-

Растворимость взаимно-четверной системы при 95°

| Жидкая фаза<br>вес. ° <sub>°0</sub> |       |                                       |                                     | Влажный осадок                 |       |         |                   |                              | Твердая фаза                                                                                          |  |
|-------------------------------------|-------|---------------------------------------|-------------------------------------|--------------------------------|-------|---------|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------|--|
|                                     |       |                                       |                                     | вес. 0/0                       |       |         |                   |                              |                                                                                                       |  |
| K <sub>3</sub> CO <sub>3</sub>      | кон   | Ca(OH) <sub>3</sub> -10 <sup>-2</sup> | CaCO <sub>3</sub> ·10 <sup>-2</sup> | K <sub>2</sub> CO <sub>3</sub> | кон   | Ca(OH), | CaCO <sub>3</sub> | Н <sub>2</sub> О по разности |                                                                                                       |  |
| 53,56                               | 7,51  | _                                     | 0,023                               | 57,60                          | 0,68  | -       | 26,75             | 15,97                        | K <sub>2</sub> CO <sub>3</sub> ·2H <sub>2</sub> O + K <sub>2</sub> CO <sub>3</sub> ·CaCO <sub>3</sub> |  |
| 49.14                               | 10,63 | _                                     | 0,028                               | 56,48                          | 1,02  | -       | 24,31             | 18,19                        |                                                                                                       |  |
| 45,14                               | 14,56 | _                                     | 0,030                               | 51,13                          | 3,75  | -       | 23,56             | 21,56                        | •                                                                                                     |  |
| 31,78                               | 27,79 | _                                     | 0,041                               | 18,57                          | 13,14 | -       | 31,80             | 36,49                        |                                                                                                       |  |
| 21,35                               | 41,00 | _                                     | 0,050                               | 11,53                          | 23,40 | _       | 30,02             | 35,05                        |                                                                                                       |  |
| 16,15                               | 51,13 | 0,082                                 | 0,053                               | 9,87                           | 33,36 | 1,67    | 19,00             | 36.10                        | $K_2CO_3 \cdot 2H_2O + KOH \cdot H_2O + CaCO_3 + Ca(OH)$                                              |  |
| 10,75                               | 56,50 | 0,075                                 | _                                   | 2,48                           | 55,61 | 5,20    |                   | 36,71                        | $KOH \cdot H_2O + Ca(OH)_2$                                                                           |  |
| 8,99                                | 58,22 | 0,056                                 | _                                   | 1,97                           | 57,35 | 4,60    | _                 | 36,08                        | 3                                                                                                     |  |
| 8,01                                | 60,22 | 0,060                                 | _                                   | 0,96                           | 58,55 | 4,59    | _                 | 35,90                        |                                                                                                       |  |
| 33,88                               | 6,16  | -                                     | 0,056                               | 14,84                          | 3,12  | _       | 38,60             | 38,44                        | CaCO <sub>3</sub> + K <sub>3</sub> CO <sub>3</sub> CaCO <sub>3</sub>                                  |  |
| 18,58                               | 20,07 | _                                     | 0,057                               | 5,34                           | 9,41  | -       | 44,53             | 40,72                        |                                                                                                       |  |
| 35,43                               | 5,14  | _                                     | 0,055                               | 15,58                          | 3,10  | -       | 41,76             | 39,56                        |                                                                                                       |  |
| 36,46                               | 4,06  | _                                     | 0,055                               | 16,36                          | 2,95  | _       | 41,19             | 39,50                        |                                                                                                       |  |
| 27,05                               | 1,14  | _                                     | 0,057                               | 12,00                          | 0,75  | -       | 43,78             | 43,47                        |                                                                                                       |  |
| 0,08                                | 2,68  | 0,421                                 | 0,017                               | 0,06                           | 4,98  | 10,55   | 37,57             | 49,85                        | Ca(OH) <sub>2</sub> + CaCO <sub>3</sub>                                                               |  |
| 0,22                                | 5,14  | 0,416                                 | 0,011                               | 0,09                           | 2,45  | 11,64   | 37,12             | 48,70                        |                                                                                                       |  |
| 0,45                                | 7,70  | 0,262                                 | 0,010                               | 0,22                           | 3,60  | 9,89    | 36,93             | 49,36                        |                                                                                                       |  |
| 0,68                                | 9,39  | 0,186                                 | 0,007                               | 0,28                           | 5,85  | 12,83   | 36,39             | 50,20                        |                                                                                                       |  |
| 1,08                                | 11,19 | 0,140                                 | 0,008                               | 0,72                           | 7,16  | 8,94    | 36,00             | 47,38                        |                                                                                                       |  |

ными между точками 1, 2, 3, 1;  $Ca(OH)_2$ —4, 5, 7, 4;  $CaCO_3$ —4, 7, 8, 6, 4;  $KOH\cdot H_2O$ —2, 4, 5 и двойной соли карбонатов калия и кальция—1, 3, 4, 6, 1.



Образование двух видов двойных карбонатных солей калия и кальция:  $K_2CO_3 \cdot CaCO_3 \cdot 2H_2O$  и  $K_2CO_3 \cdot CaCO_3$  установлено методом «остатков» и подтверждено химическим, термографическим, кристаллооптическим, рентгенографическим анализами [6, 7]. Поле  $CaCO_3$ , вследствие наименьшей растворимости этой соли, занимает большую часть площади четырехугольника. Поля  $K_2CO_3 \cdot 2H_2O$ ,  $KOH \cdot H_2O$  и двух видов двойных солей:  $K_2CO_3 \cdot CaCO_3$  и  $K_2CO_3 \cdot CaCO_3 \cdot 2H_2O$  невелики и вытянуты вдоль стороны  $K_2CO_3 - KOH$  четырехугольника. Поля кристаллизации обеих двойных солей совпадают и ограничиваются линиями, расположенными между точками 1, 3, 4, 6, 1.

Таким образом, диаграмма растворимости взаимно-четверной системы K<sub>2</sub>CO<sub>3</sub>—CaCO<sub>3</sub>—Ca(OH)<sub>2</sub>—КОН—H<sub>2</sub>O имеет пять полей кристаллизации, ограниченных четырьмя линиями одновременной кристаллизации двух соединений. Выяснено образование двух видов двойных карбонатных солей калия и кальция (K<sub>2</sub>CO<sub>3</sub>-CaCO<sub>3</sub>-2H<sub>2</sub>O и K<sub>2</sub>CO<sub>3</sub>-CaCO<sub>3</sub>), области сосуществования которых совпадают.

 $K_2CO_3-Ca(OH)_2-KOH-CaCO_3-H_2O$  ՔԱՌԱԿՈՄՊՈՆԵՆՏ ՓՈԽԱԴԱՐՁ ՍԻՍՏԵՄԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ։ IV.

Գ. Հ. ԳՐԻԳՈՐՑԱՆ, Մ. Ս. ՄՈՎՍԻՍՑԱՆ և Ռ. Մ. ԿԻՐԱԿՈՍՑԱՆ

## Udhahaid

Ուսումնասիրված է 95°-ում Ca(OH)<sub>2</sub>—CaCO<sub>3</sub>—H<sub>2</sub>O սիստեմի լուծելիության դիագրամը։ Պարզված է, որ ուսումնասիրվող սիստեմում կրկնակի աղեր չեն առաջանում, իսկ Էվտոնիկ կետում տեղի է ունենում Ca(OH)<sub>3</sub> և

CaCO - h Sussumby piniphywgnist

Ուսումնասիրված հռկոմպոնննա սիստեմների ( $K_2CO_3$ —KOH— $H_1O$ ;  $K_2CO_3$ — $CaCO_3$ — $H_2O$ ; KOH— $Ca(OH)_2 \cdot H_2O$ ;  $Ca(OH)_3 \cdot CaCO_3 \cdot H_2O$ ) ավյալների հիման վրա կառուցված և ուսումնասիրված է 95°-ում քառակոմ-պոնենա փոխադարձ սիստեմի լուծելիության դիագրամը և ցույց է արված, որ ուսումնասիրվող սիստեմում պինդ ֆազում անջատվում են  $K_2CO_3 \cdot 2H_2O$ ;  $KOH \cdot H_2O$ ;  $Ca(OH)_2$ ;  $CaCO_3$  և կալիումի ու կալցիումի երկու տիպի՝  $K_2CO_3 \cdot CaCO_3$  և  $K_2CO_3 \cdot CaCO_3 \cdot 2H_2O$  կրկնակի կարդոնատային աղեր։ Սրանց դոլացման սահմանները նույնն են։ Այդ աղերը կալուն են միայն  $K_2CO_3$ —KOH-ի խիտ՝ 41,82 կ2.  $O_0$  (376 գ/լ ըստ  $K_2O$ -ի) լուծույթներում։

Ստացված կրկնակի "աղհրի դոլությունը հաստատված է քիմիական, ջևրմարիմիական, բլուրհղաօպտիկական և ռևնտգևնագրաֆիական անալիզ~ նհրով։

## ЛИТЕРАТУРА

- 1. G. Badlander, Z anorg. Chem., 18, 1134 (1905).
- 2. M. Le Blanc, K. Novotny, Z. anorg. Chem., 51, 181, 191 (1906).
- 3. П. П. Будников, Л. К. Сыркин, 2. anorg. Chem., 128, 131 (1923).
- 4. П. П. Федотьев. Сб. исслед. работ, ОНТИ, Химтеорет., 1936, стр. 62.
- 5. М. И. Усанович, С. Б. Боровик, Укр. хим. ж., 4, 483 (1929).
- 6. М. С. Мовсесян, Г. О. Григорян, А. А. Хачатрян, Арм. хим. ж., 22, 300 (1969), 23, 568 (1970).
- 7. Г. О. Григорян, М. С. Мовсесян, ЖПХ, 52, 2409 (1969).
- 8. Г. О. Григорян, Р. М. Киракосян, Арм. хим. ж., 22, 518 (1969).
- 9. Н. М. Страхов. Тр. ин-та геол. наук, Изд. АН СССР, геол. секция № 45, 1955, стр. 8.
- А. Б. Здановский, Е. Ф. Соловьева, А. Л. Эзрохи, Е. Е. Ляховская, Справочник эксперимент. данных по растворимости солевых систем, т. 3, ГОНТИХЛ., Ленинград. 1960.