

XXIV, № 9, 1971

химическая технология

УДК 541.8+678.744.72

РАСТВОРИМОСТЬ СЛОЖНЫХ ВИНИЛОВЫХ ЭФИРОВ В ВОДНЫХ РАСТВОРАХ ПОЛИВИНИЛОВОГО СПИРТА

м. а. энфиаджян, л. н. назарян и а. е. акопян

Ерованский отдел НПО «ПЛАСТПОЛИМЕР»

Поступило I VI 1970

Рефрактометрическим методом исследована растворимость винилацетата, винилпрописната и вынилбутирата в водных растворах поливинилового спирта. Устаноллено, что растворимость мономеров возрастает с увеличением концентрации поливинилового спирта.

Изучена кинетика растворения мономеров при 60° и пожазано, что насыщение раствора поливнинлового спирта винилацетатом наступает за 11 часов, а винилпропизнатом и винилбутиратом—за 32 часа.

Рис. 1., табл. 2, библ. ссылок 8.

При синтезе полимеров и сополимеров сложных виниловых эфиров методом эмульсионной полимеризации в качестве эмульгатора, в основном, применяется поливиниловый спирт.

В овязи с этим предотавляет определенный интерес изучение растворимости сложных виниловых эфирных мономеров, например, винилацетата, винилиропионата и винилоутирата, в водных растворах поливинилового спирта при температуре полимеризации этих мономеров в эмульсии.

Относительно растворимости углеводородов и мономеров в растворах поверхностноактивных веществ (ПАВ) имеется ряд исследований [1—8]. Однако они, в основном, относятся к растворимости бензола, стирола, гептана, олеофильных красителей, а также мономеров, применяемых в производстве синтетического каучука. Что же касается характера и величины растворимости вышеперечисленных эфирных мономеров в водных растворах поливинилового опирта, то в литературе почти отсутствуют какие-либо указания по этому поводу.

В качестве поверхностно-активного вещества нами был использован поливиниловый спирт марки ПВС-4 с содержанием ащетатных групп 0,92%. Мономеры сложных виниловых эфиров характеризовались показателями, приведенными в таблице 1.

Количество растворенного мономера определяли по изменению коэффициента рефракции по методике, приведенной в работе [8], используя следующее уравнение:

$$v_{\text{M}} = v_{\text{p}} \frac{\frac{n_{\text{p}}^2 - 1}{n_{\text{p}}^2 + 2} - \frac{n_{\text{p}}^2 - 1}{n_{\text{p}}^2 + 2}}{\frac{n_{\text{p}}^2 - 1}{n_{\text{p}}^2 + 2} - \frac{n_{\text{M}}^2 - 1}{n_{\text{M}}^2 + 2}},$$

где n — коэффициент рефракции; v — объем, p, э, м — индексы, относящиеся соответственно к раствору мономера в водном растворе эмульгатора, исходному раствору эмульгатора и мономеру.

Коэффициенты рефракции определяли при помощи рефрактометра ИРФ-23

		Таблица 1	
Мономеры	Т. кип., °С	PM	n ²⁰
Винилацетат	72.5	0,932	1,40954
Винилпропионат	92.0	0,915	1,41971
Винилбутират	114,0	0,899	1,42564

Для проведения каждого определения 10 мл раствора поливинилового опирта отмерялось в стеклянный сосуд с притертой пробкой емкостью 50 мл. Туда же вводился при помощи микробюретки определенный объем мономера. Содержимое колбы перемешивалось и термостатировалось при 60° на определенное время. При этой же температуре определяется коэффициент рефракции для раствора (n_p) , эмульгатора (n_b) и мономера (n_u) . Использовали растворы поливинилового спирта концентраций от 1 до $7^{\circ}/_{\circ}$.

Для сравнения в аналогичных условиях определялись растворимости исследуемых мономеров в чистой воде при 20 и 60°. Полученные данные приведены в таблище 2.

Таблица 2 Растворимость сложных виниловых эфиров в воде, мл

	Температура, °С	
Мономеры	20	60
Винилацетат	0,15	0,300
Винилпропионат	0,03	0,178
Винилбутират	0,02	0,085

При растворении мономеров в водном растворе поливинилового стирта коэффициент рефракции системы изменяется до насыщения раствора мономером. Так, насещение раствора поливинилового спирта винилацетатом имеет место за 11 часов, а винилпропионатом и винилбутиратом—за 32 часа.

На рисунке приведены данные о растворимости мономеров в растворах поливинилового спирта различных концентраций при 60°.

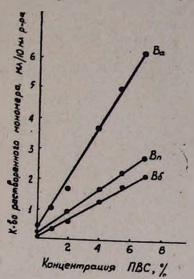


Рис. Зависимость растворимости винилацетата, винилиропионата и винилбутирата от концентрации поливинилового спирта при 60°.

Из приведенных данных следует, что растворимость мономеров линейно возрастает с повышением конщентрации поливинилового спирта. При этом увеличение длины цепи кислотного радикала в эфирной группе приводит к уменьшению растворимости мономера, что очевидно, связано с увеличением гидрофобности и фактора асимметричности молекулы мономера.

սինոկԱՅԻՆ ԷՍԹԵՐՆԵՐԻ ԼՈՒԾԵԼԻՈՒԹՅՈՒՆԸ ՊՈԼԻՎԻՆԻԼԱՅԻՆ ՍՊԻՉԻ ՎԵԱՂԵՐ ԱՅԳԻՆԵՐՈՒՄ

Մ. Ա. ԷՆՖԻԱԶՅԱՆ, Լ. Ն. ՆԱԶԱՐՅԱՆ և 2. Ե. ՀԱԿՈՐՑԱՆ

Ամփոփում

Ռեֆրակտոմետրիկ եղանակով հետազոտված է պոլիվինիլային սպիրտի ջրային լուծույթում վինիլացետատի, վինիլպրոպիոնատի և վինիլբուտիրատի լուծելիությունը։

Ցույց է տրված, որ պոլիվինիլային սպիրտի կոնցենտրացիայի բարձրաց-Հան հետ աձում է մոնոմերների լուծելիությունը։

Ուսումնասիրված է 60°-ում մոնոմերների լուծելիության կինետիկան և ցույց է տրված, որ վինիլացետատով պոլիվինիլային սպիրտի լուծուլթի հագենալը տեղի է ունենում 11 ժամում, իսկ վինիլպրոպիոնատով և վինիլբուտի-րատով՝ 32 ժամում։

ЛИТЕРАТУРА

1. А. И. Юрженко, ЖОХ, 16, 1171 (1946).

- 2. С. С. Воюцкий, М. А. Зайцева, Уоп. хим., 18, 69 (1947).
- 3. Л. Е. Перегудова, С. С. Воюцкий, Колл. ж., 10, 309 (1948).

4. А. И. Юрженко, Р. В. Кучер, Колл. ж., 14, 283 (1952).

- 5. В. А. Пчелин, В. Н. Измайлова, К. Т. Очурова, ДАН СССР, 123, 505 (1958).
- 6. В. А. Пчелин, В. Н. Измайлова, Г. П. Большова, ДАН СССР, 142, 950 (1962).
- 7. Г. П. Ямпольская, В. Н. Измайлова, В. А. Пчелин, В. А. Волынская, Высокомол соед. 7, 1956 (1965).
- 8. Э. Л. Шакарян, Л. Г. Мелконян, Р. В. Багдасарян, Арм. хим. ж., 23, 10 (1970).