XXIV, № 9, 1971

УДК 542.91+547.4259

СИНТЕЗ ПРОИЗВОДНЫХ БИГУАНИДА

Л. А. АРОЯН, Т. Р. ОВСЕПЯН и И. Н. НИКОЛАЕВА

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 15 VII 1970

С целью испытания гипотензивных и гипоглижемических свойств синтезированы некоторые производные бигуанида, содержащие β -, γ - (4-алкоксибензилмеркапто) алкильные, β -(2-алкокои-5-бромбензилмеркапто) этильные и γ -(4-алкокоифенил) препильные группы.

Табл. 2, библ. ссылок 7.

Ранее полученные нами производные гуанидина, содержащие β -, γ - (4-алкоксибензилмеркапто), алкильные и β -(2-алкокси-5-бром- бензилмеркапто) этильные группы, проявляли гипотензивную активность [1].

Было интересно проследить изменение пипотензивных овойств в связи с переходом от гуанидиновой группы к гуанилгуанидиновой. С. другой стороны, систематические исследования производных гуанидил-гуанидина с различными заместителями выяснили антималярийнь: [2], гипотензивные [3], антивирусные [4], гипогликемические [5] и другие свойства этих соединений. Однако основной областью испытания свойств производных бигуанида является гликемия. В результате таких испытаний выявлен высокоактивный гипогликемический препарат N'-(β-фенэтил) бигуанид, нашедший клиническое применение [6]:

Производные бигуанида являются также интересными промежуточными соединениями в синтезе производных гетероциклических систем, в частности, производных триазына.

В этой связи представляли интерес синтез и испытание биологических свойств некоторых производных бигуанида с общими формулами I, II, III:

1 n = 2, 3

Производные бигуанида нами получены сплавлением соответствующих первичных аминов с дициандиамидом:

$$RO$$
 $CH_2S(CH_2)_nH_2$ $\xrightarrow{NCNHCNH_3}$ $I.$

Температура реакции в каждом отдельном случае поддерживалась на 10—15° выше температуры расплавления смеси дициандиамида и соответствующего амина. В случае бигуанидов структуры I (n=2) продукты реакции выделены в виде оснований и моногидрохлоридов. Затем основания были переведены в дигидрохлориды обработкой эфирным раствором хлористого водорода до рН 3—2. Бигуаниды I (n=3) и II из реакционной смеси выделены в виде оснований, так как для кристаллизации моногидрохлоридов из реакционной смеси, очевидно, необходимы длительное стояние. В случае бигуанидов III также выделены основания, которые не закристаллизовались и были охарактеризованы в виде сильно гигроскопичных дигидрохлоридов.

Амины, необходимые для синтеза бигуанидов I, III, получены ранее описанными методами [1], а 7-(4-алкоксифенил) пропиламины получены по приведенной схеме:

$$RO \bigcirc CH_{2}CI \xrightarrow{NCCH_{2}COOC_{2}H_{5}} RO \bigcirc CH_{2}C(CN)HCOOC_{2}H_{5} \xrightarrow{NaOH} IV$$

$$\longrightarrow RO \bigcirc CH_{2}C(CN)HCOOH \xrightarrow{-CO_{2}} RO \bigcirc (CH_{2})_{2}CN \xrightarrow{LiAiH_{4}} VI$$

$$\longrightarrow RO \bigcirc (CH_{2})_{3}NH_{2}.$$

$$VII$$

Взаимодействие 4-алкоксибензилхлоридов с циануксусным эфиром проводилось в присутствии эквимольного количества метилата натрия и привело к 4-алкоксибензилциануксусным эфирам. Щелочным омылением последних получались соответствующие кислоты, которые декарбоксилированием в ореде диметилформамида переводились в β-(4-алкоксифенил) пропионитрилы. Восстановлением нитрилов алюмогидридом лития получались γ-(4-алкоксифенил) пропиламины. Вследствие быстрой карбонизации аминов охарактеризованы их гидрохлориды.

Экспериментальная часть

Этиловые эфиры 4-алкоксибензилциануксусной кислоты (IV, $R=CH_{.t}$, C_2H_5). К алкоголяту, приготовленному из 5,52 г (0,24 г-ат) натрия в 80 мл безводного метанола, при перемешивании и температуре 15° приливают 1:13 г (1 моль) этилового эфира циануксусной кислоты. Затем добавляют 0,24 моля 4-алкоксибензилхлорида в течение 30 минут. Смесь кипятят 10 часов. Спирт отгоняют, к остатку добавляют 100 мл воды и экстрагируют эфиром. Выход IV ($R=CH_3$) 34,7%: т. кип. 188—192°/1 мм; d_4^{20} 1,1266; n_D^{20} 1,5081; MR_D найдено 61,73, вычислено 61,68. Найдено %: С 66,72; Н 6,24; N 5,78. $C_{13}H_{15}NO_3$. Вычислено %: С 66,89; Н 6,48; N 6,00.

Выход IV ($R=C_2H_5$) 34,6%: т. кип. 194—196°/1 мм; d_4^{20} 1,1031; n_D^{20} 1,5040; MR_D найдено 66,38, вычислено 66,29. Найдено %: С 68,17; Н 6,48; N 5,90, $C_{14}H_{17}NO_3$. Вычислено %: С 68,01; Н 6,93; N 5,67.

4-Алкоксибензилциануксусные кислоты (V, $R=CH_3$, C_2H_5). К перемешиваемому раствору 6,4 z (0,16 моля) едкого натра в 50 мл воды при 25° добавляют 0,08 моля IV ($R=CH_3$, C_2H_5). Перемешивание продолжают еще час при 25° и подкисляют 27 мл 4 μ соляной кислоты. Смесь перемешивают 30 минут, экстрагируют эфиром и эфирный экстракт промывают водой. После оптонки растворителя остаток при стоянии 10-12 часов кристаллизуется.

Выход V (R=CH₃) 98,7%, т. пл. 75—76° (из петролейного эфира). Найдено %: С 64,01; Н 5,35; N 7,11. $C_{11}H_{11}NO_3$. Вычислено %: С 64,37; Н 5,40; N 6,83.

Выход V ($R=C_2H_5$) 90,5%, т. пл. 82—84° (из петролейного эфира). Найдено %: С 66,11; Н 6,14; N 5,98. $C_{12}H_{13}NO_3$. Вычислено %: С 65,75; Н 5,98; N 6,39.

 β -(4-Алкоксифенил)пропионитрилы (VI, R=CH₃, C₂H₅). Раствор 0,08 моля V (R=CH₃, C₂H₅) в 60 мл диметилформамида кипятят 1,5 часа. По охлаждении выливают в 60 мл воды, экстратируют эфиром и сушат над сернокислым натрием. Нитрилы перегоняют в вакууме. Выход VI (R=CH₃) 73,9%; т. кип. 145—148%1 мм; п²⁰ 1,5298. R₁ 0,88 в тонком слое окиси алюминия в системе эфир—метанол (5:3). По лит. данным т. кип. 290—300°, 167%15 мм [7]. Найдено %: С 74,42; Н 7,11; N 8,34. $C_{10}H_{11}$ NO. Вычислено %: С 74,50; Н 6,88; N 8,69.

Выход VI ($R=C_2H_5$) 87,7%: т. кип. 150—154% им; d_4^{20} 1,0211; n_D^{20} 1,5152; MR_D найдено 51,51, вычислено 50,79. R_1 0,83 в тонком слое окиси алюминия в системе эфир—метанол (5:3). Найдено %: С 74,95; Н 7,98; N 7,63. $C_{11}H_{13}$ NO. Вычислено %: С 75,41; Н 7,48; N 7,80.

 γ -(4-Алкоксифенил) пропиламины (VII, $R=CH_3$, C_2H_5). К раствору 4,2 г (0,112 моля) алюмогидрида лития в 100 мл безводного эфира при перемешивании приливают 0,056 моля VI ($R=CH_3$, C_2H_5) в 30 мл эфира. Продолжая перемешивание, смесь нагревают 20 часов, затем обрабатывают 30 мл 40%-ного раствора едкого натра. Амин извлекают эфи-

R п основания, остория поснования, остория поснования посно	вычис-
СН3 2 83,2 128—130 С12Н19N3OS — <th>TACHO THC-</th>	TACHO THC-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	He He
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 19,76
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	15 18,31
Calls 2 01,0 10 111 C15112511503 - - - - 21,00 3,10 3,31 210 212 C15112111503 17,72 17,00 17	
u30-C4H ₈ 2 87,1 132-133 C ₁₅ H ₂₅ N ₅ OS - - - 21,27 21,65 9,63 9,91 217-218 C ₁₅ H ₂₇ Cl ₂ N ₅ OS 17,61 17,88 17	48 17 67
CH ₃ 3 81,7 93-94 C ₁₂ H ₂₁ N ₅ OS 52,63 52,84 6,96 7,17 23,45 23.71 - - 191-192 C ₁₃ H ₂₃ Cl ₂ N ₅ OS 19,08 19,25 18	75 19,01
С ₂ H ₃ 3 90,4 109—110 С ₁₄ H ₂₃ N ₅ OS 54,11 54,36 7,50 7,49 22,47 22,63 — — 110—113л С ₁₄ H ₂₈ Cl ₂ N ₅ OS 18,23 18,54 18	11, 18,31
C_3H_7 3 77.6 110—112 $C_{15}H_{25}N_5OS$ 54,97 55,61 8,01 7,79 21,24 21,65 — — 215—217 $C_{15}H_{21}Cl_2N_5OS$ 17,56 17,88 17	45 17,67

а. Т. пл. моногидрохлорида 120—122°. б. Т. пл. моногидрохлорида 124—126°. в. Не удалось закристаллизовать. г. Т. пл. моногидрохлорида 138—140°. д. Гигроскопичен,

ром. Выход VI (R=CH₃) 78,2%; т. кип. 1·10—1·12°/1 мм; т. пл. гидрохлорида 222—223° (из этанола). По лит. данным, т. пл. гидрохлорида 220—225° [7]. Найдено %: Cl 16,97; N 6,72. C₁₀H₁₆ClNO. Вычислено %: Cl 17,58; N 6,95.

Выход VII ($R=C_2H_5$) 71,8%, т. кип. 122—125°/1 мм, т. пл. гидрохлорида 231—232° (из этанола). Найдено %: Cl 15,87; N 6,30.

С11 H18 CINO. Вычислено %: CI 16,45; N 6,49.

N'-[¬-(4-Алкоксифенил)пропил]бигуаниды (II, R=CH₃, C₂H₅). Смесь 0,02 моля гидрохлорида амина VII (R=CH₃, C₂H₅) и 1,7 г (0,02 моля) дициандиамида тщательно измельчают в ступке и при перемешивании нагревают на металлической бане. При температуре бани 120—125° смесь начинает плавиться и полностью расплавляется при температуре бани 140—145°, затем за очет экзотермической реакции температура омеси быстро поднимается; поэтому баню удаляют на 10—15 минут и затем вновь подставляют. Нагревание продолжают еще час при температуре бани 150—160° и смесь оставляют на 10—12 часов. Затвердевший продукт растворяют в 50 мл воды и добавляют 40%-ный раствор едкого напра до рН 9—9,5. Выпавший маклообразный осадок оставляют в холодильнике 10—12 часов, отфильтровывают и перекристаллизовывают из смеси ацетона с эфиром (1:1).

Таблица 2

- 10	0/0	Т. пл.	Morouse	Анализ, 0/0			
				С		Н	
R		дигидро- хлорида,	Молекулярная формула	OHS	÷	9,40	ů
	Выход вания,	°C		найдено	вычис	найдено	яычис
	<u> </u>			2	18 9	H2	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CH ₃	76,2	82—84	C ₁₂ H ₂₀ BrCl ₂ N ₅ OS	16,12	16,37.	15,19	16,16
C ₂ H ₅	64,2	69—70	C ₁₃ H ₂₂ BrCl ₂ N ₅ OS	15,73	15,86	15,43	16,66
C ₃ H ₇	66,3	102-103	C14H24BrCl2N5OS	15,08	15,37	15,13	15,18
C ₄ H ₉	81,4	114115	C ₁₅ H ₂₈ BrCl ₂ N ₅ OS	14,81	14,91	14,67	14,73
				-			1

Выход II ($R=CH_3$) 83,3%, т. пл. 1:19—121°. Обработкой спиртового раствора основания насыщенным эфирным раствором хлористого водорода получен дигидрохлорид бигуанида с т. разл. 230—231° (из этанола). Для основания найдено %: С 57,92; Н 7,28; N 28,32. $C_{12}H_{19}N_5O$. Вычислено %: С 57,81; Н 7,68; N 28,09. Для дигидрохлорида найдено %: С 122,45; N 22,04. $C_{12}H_{21}Cl_2N_5O$. Вычислено %: С 22,63; N 21,73.

Выход II ($R=C_2H_5$) 66,0%, основание маслообраэно, т. разл. дигидрохлорида 239—240° (из этанола). Для основания найдено %: С 63,72; Н 7,67; N 26,17. $C_{13}H_{21}N_5O$. Вычислено %: С 63,81; Н 8,04;

N 26,59. Для дигидрохлорида найдено %: Cl 21,52; N 20,64. C₁₃H₂₃Cl₂N₅O. Вычислено %: Cl 21,69; N 20.83.

Бигуаниды I, III и их дигидрохлориды получены аналогично вышеописанному. Реакционная температура для каждого представителя поддерживалась на 10—15° выше температуры расплавления соответствующей смеси. Полученные данные приведены в таблицах 1,2

ՔԻԳՈՒԱՆԻԳԻ ԱԾԱՆՑՅԱ<u>ԼՆԵՐԻ ՍԻՆ</u>ԹԵԶ

Հ. Ա. ՀԱՐՈՑԱՆ, Թ. Ռ. ՀՈՎՄԵՓՑԱՆ և Ի. Ն. ՆԻԿՈԼԱԵՎԱ

Udhnhned

Հիպոթենզիվ և հիպոգլիկեմիկ հատկությունների հետազոտման նպատակով սին Թեզված են մի շարք 3-, --(4-ալկօքսիրենգիլմերկապտա)ալկիլ-, β-(2-ալկօքսի-5-րրոմրենոլիլմերկապտա)ԷԹիլ- և Վ-(4-ալկօքսիֆենիլ)պրոպիլարմալիայվաց երժաւարիմրբեր, չաղատատառիառը ասաձրակիր աղիչըրբեր բ դիցիանդիամիդի փոխազդմամբ,

ЛИТЕРАТУРА

- 1. А. А. Ароян, Т. Р. Овсепян, Арм хим. ж., 21, 858 (1968); А. А. Ароян, Т. Р. Овсепян, П. Р. Акопян, Арм. хим. ж. (в печати).
- 2. H. C. Carrington, Nature, 168, 1080 (1951).
- 3 Франц. пат. 1, 320, 255 (1963); [С. А., 59, 10010b (1963].
- 4. Яп. пат. 69, 01, 981 (1969); [С. А., 70, 87848 (1969)]. 5. S. L. Shapiro, V. A. Farrino, L. Freedman, J. Am. Chem. Soc., 81, 2220 (1959).
- 6. J. Pomeranze, H. Fujiy, G. T. Mouratoff, Proc. Soc. Exp. Biol. Med., 95, 193 (1957).
- 7. Bellst., 10, (107).