XXIV, № 8, 1971

КРАТКИЕ СООБЩЕНИЯ

УДК 542.252.6+678.744.32+678.744.422

ИССЛЕДОВАНИЕ СОВМЕСТНОЙ ПОЛИМЕРИЗАЦИИ АЛЛИЛАКРИЛАТА С ВИНИЛАЦЕТАТОМ В РАСТВОРЕ

А. Г. САЯДЯН, М. Г. БОЯХЧЯН и Ф. С. КИНОЯН

Ереванский политехнический институт

Поступило 14 XII 1970

В литературе описаны сополимеры аллилакрилата со стиролом [1], и бутилакфилатом [2], полученные анионной полимеризацией в присутствии тонкодисперсированного лития или алкилалюминия. Попытки получить полиаллилакрилат и его сополимеры катионной и радикальной полимеризацией не увенчались успехом. Однако в последние годы появились работы [3] по получению полиаллилакрилата линейно-циклической структуры в присутствии радикальных инициаторов в разбавленных растворах.

Согласно результатам анализов продуктов омыления полиаллилакрилатов, рентгеновским анализом и расшифровкой ИК спектров выведена следующая эмпирическая формула полиаллилакрилатов [4]:

Полналлилакрилат представляет собой белый порошок с т. разм. 410—440°.

Для выяснения возможности радикальной сополимеризации винилацетата с аллилакрилатом с получением сополимера с высокой температурой размягчения была проведена работа, результат которой излагается в настоящем сообщении.

Сополимеризация аллилакрилата с винилацетатом

Условия процесса и свойства полученных сополимеров	№ опытов									
	1	2	3	4	5	6	7	8	9	10
Весовое соотношение растворитель: мономер	70:30	70:30	50 : 50	50:50	50 : 50	50:50	95 : 5	95 : 5	90 : 10	90 : 10
Весовое соотношение винилацетат: аллилакрилат	90 : 10	95:5	49:1	49,5:0,5	49 : 1	49,5:0,5	90 : 10	90 : 10	90 : 10	90 : 10
Среда сополимеризации	650/0 у. к. — 350/0 вода			ледяная уксусная			нслот	8	метаноя	
	(NH ₄) ₂ S ₂ O ₈		ПБ	ПБ	ДАК	ДАК	ДАК	ПБ	ДАК	ап
Инициатор (тип и концентация, мол. %)	0,2	0,2	2	2	2	2	0,2	0,2	0,5	0,5
Температура процесса, °С	60	60	70	70	70	70	60	60	60	60
Продолжительность процесса, час	1	1	5 мин	5 мин	5 мин	5 мин	11	11	83	83
Выход полимера, 0/0	7,4	17,1	16,5	11,2	24,1	34,0	незначительное соличество		7,0	7,0
Вид полимера в растворе	вязкий раствор		стекловидная масса			1000	раствор		осадок	
Температура разиятчения, °С	260-320	180-200	280—300	240 -280	240	200-240	200 - 220	180-220	200 - 240	
Растворимость в различных растворителях	н/р	н/р	н/р	н/р	н/р	н/р	н/р	н/р	н/р	н/р

Экспериментальная часть

Аллилакрилат синтезирован нами этерификацией аллилового спиртата акриловой кислотой в присутствии H_2SO_4 и подвергнут вакуум-перегонке; собрана фракция с т. кип. $65-66^\circ/100~\text{мм};~n_D^{20}~1,4315;~d_4^2~0,910$. Винилацетат подвергнут перегонке и собрана фракция с $n_D^2~1,3957$. Полимеризация проводилась в запаяжных ампулах. По истечении определенного времени ампулы вскрывались, полимер осаждался и промывался метанолом, сушка проводилась в атмосфере воздуха. Условия проведения опытов и свойства полученных сополимеров приведены в таблище.

Растворимость полученных сополимеров определялась в различных растворителях (ащетон, бензол, диметилформамид, N-метилпирролидоц, этилацетат и др.). Все полученные сополимеры нерастворимы, независимо от условий их получения.

Основываясь на литературных данных [3], показывающих, что главная полимерная цепь полиаллилакрилатов в основном спроится за счет «акрильных» двойных связей, а аллильные находятся в боковой цепи полимера, можно предположить, что такая же закономерность характерна и для процессов сополимеризации. Наличие двойных связей в боковой цепи создает предпосылки для инициирования и роста их вследствие вторичных процессов—взаимодействия двойных связей с инициатором и макрорадикалом, отщепления сводорода аллильной группировки, что и является причиной возникновения трехмерной структуры.

Предположение о наличии двойных аллильных C=C-связей в боковой цепи сополимера, приводящих к сщиванию макромолекул, подтверждается ИК спектральным анализом. Сополимеры винилацетаталлилакрилат, независимо от условий их получения (спыты 2,4,6), дают идентичный ИК спектр, для которого жарактерны полосы поглощения, соответствующие валентным колебаниям карбонильной группы, связанной с аллильной двойной связью в области 1728—1731 cm^{-1} , а такоже колебаниям $v_{C=C}$ в области 1693 и $v_{C=CH}$ 3111 cm^{-1} .

Согласно полученным данным, даже в сильно разбавленных раство рах при небольшом содержании аллилакрилата в мономерной смеси получаетоя сополимер трехмерной спруктуры.

ЛИТЕРАТУРА

- 1. K. Hiroyoshi, F. Setsuko, J. Polym. Sci., 1969, C, № 23, 655; [РЖХим. 6С312 (1970)].
- 2. Пат. США 3,824,422 (260—80.5); [С. А., 66, 11303 (1967)].
- 3. Л. Гиндин, С. Медведев, Е. Флешер, ЖОХ, 19, 9 (1949); L. Trossarelli, M. Guatta, A. Priola, J. Polym. Sci., B5, № 2, 129 (1967); G. Schulz, M. Marx, H. Hartman, Makromol. Chem., 44—46, 281 (1961); С. Г. Мацоян, Г. М. Погосян, А. А. Чолахян, Изв. АН АрыССР, ХН, 18, 178 (1965).
- 4. M. Donati, M. Farina, Makromol. Chem., 60, 233 (1963).