XXIV, № 7, 1971

УДК 542.91+547.853.3

химия непредельных соединении

XXV. СИНТЕЗ НЕКОТОРЫХ ЗАМЕЩЕННЫХ 2-ОКСО- И 2-ТИОТЕТРАГИДРОПИРИМИДИНОВ

Р. М. ХАЧАТРЯН, С. К. ПИРЕНЯН и С. А. ВАРТАНЯН

Ниститут тонкой органической химии АН Армянской ССР (Ереван)

Поступило 26 III 1970

Дивинплистоны I—IV и метоксивинилистоны V—VIII с мочевиной или тиомочевиной в присутствии сухого хлористого водорода при 120—130° образуют 2-оксо- и 2-тиотетрагидропиримидины (IX—XVI), соответственно. Строение полученных соединений подтверждается ИК спектрами и некоторыми химическими превращениями. Табл. 1. библ. ссылок 5.

Ранее нами было установлено, что изотиоцианкетоны [1] взаимодействуют с аммиаком и первичными аминами, образуя тетрагидро- и гексагидропиримидинтионы-2 [2].

Показано также, что взаимодействие мочевины с β , β -диметил-, β , β -диметил- β -диме

В настоящей работе приводятся данные о взаимодействии дивинилкетонов I—IV и соответствующих метожсикетонов V—VIII с мочевиной и тиомочевиной в присулствии сухого хлористого водорода при 120— 130°. При этом получаются 4,4-замещенные 2-оксо- и 2-тиотепрагидропиримидины (IX—XVI).

$$RR'C = C(R'')COCH_{2}C(R''')HOCH_{3}$$

$$V-VIII$$

$$\downarrow$$

$$RR'C = C(R'')COCH = CHR'''$$

$$I-IV$$

$$RR'C = C(R'')COCH_{2}C(R''')HOCH_{3}$$

$$\downarrow$$

$$H_{8}NCNH_{8}$$

$$X=0, S$$

$$HN$$

$$NH$$

$$X$$

$$IX-XVI$$

1, V, R=R'=CH₃. R"=R"'=H; II, VI, R=CH₃, R'=C₂H₅, R"=R"'=H; III, VII, R и R' пентаметилен, R"=R"'=H; IV, VIII, R=H, R'=R"=R"'=CH₃; IX. R=R'=CH₃, R"=R"'=H, X=O; X. R=R'=CH₃, R"=R"'=H, X=S; XII. R=CH₃, R'=C₂H₅, R"=R"'=H, X=O; XII. R=CH₃, R'=C₃H₅, R"=R"'=H, X=S; XIII. R и R' пентаметилен; R"=R"'=H, X=O; XIV. R и R' пентаметилен, R"=R"=R""=CH₃, X=O; XVI. R=H, R'=R"=CH₃, X=O; XVI. R=H, R'=R"=CH₃, X=S.

Исходя из существующих данных [4,5], не исключается также образование 2-иминотетрагидро-1,3-тиазингидрохлорида, претерпевавшего в условиях опыта внупримолекулярную перегруппировку с образованием соответствующих 2-тиотетрагидропиримидинов. Эти соображения еще не окончательны и для своего подтверждения требуют дополнительных исследований.

Нами установлено, что в условиях реакции происходит отщепление метанола от метоксикетонов V—VIII с образованием дивинилкетонов I—IV, которые затем реагируют с мочевиной или тиомочевиной, образуя соопветствующие оксо- и тиотепрагидропиримидины IX—XVI.

Строение тетрагидропиримидинов IX—XVI доказано спектральным анализом и химическим путем. В ИК опектрах оксопиримидинов найдены полосы поглощения карбонильной (1650—1680 cm^{-1}) и амидной (3200 cm^{-1}) групп, сопряженной двойной овязи (1630 cm^{-1}) и валентные колебания групп = CH_2 (3060 cm^{-1}). В ИК опектрах тиопиримидинов вместо карбонильной группы обнаружены частоты поглощения C=S (тионной) пруппы (1075 cm^{-1}). При гидрировании соединений X, XI получены соответствующие насыщенные оксо- и тиогексагидропиримидины XVII, XVIII. В ИК спектрах последних отсутствуют полосы поглощения двойной связи.

На примере соединений X, XI показано, что тио- и оксотетратидропиримидины IX—XVI подвергаются диалкилированию диметилсульфатом в присутствии гидроокиси калия с образованием соответствующих диметилпроизводных XIX, XX.

Исходя из в в диметилвинил-3-изотиоцианэтилкетона (XXI) и аммиака, синтезирован 2-тиотетрагидропиримидин (XXII), после гидрирования оказавшийся идентичным с соединением XVII; смешанная проба обоих образцов не давала депреосии температуры плавления.

XVII, XIX, $R=CH_2$, X=S; XVIII, XX, $R=C_2H_5$, X=O.

Порядок присоединения мочевины и тпомочевины к метокси—VIII и дивинилкетону IV доказан на примере гидрирования метоксикетона VIII в соответствующий насыщенный метоксикетон XXIII и последующим присоединением тиомочевины. Полученный при этом замещенный тетрагидролиримидинтион-2 (XXIV) при гидрировании над Рт-катализатором образует продукт XXV, тождественный с гексагидротиопиримидином, полученным гидрированием тетрагидротиопиримидина XVI. В ИК спектре соединения XXV отсутствуют полосы поглощения двойной связи

На примере тетратидропиримидинов X, XI показано, что ожсо- и тнотетрагидропиримидины IX—XVI вступают в диеновый синтез с ангидридом малеиновой кислоты с образованием соответствующих аддуктов XXVI, XXVII, образующих при кислотном гидролизе ожидаемые двухосновные кислоты XXVIII, XXIX.

XXVI, XXVIII. $R=CH_3$, X=S;

XXVII, XXIX. $R=C_2H_5$, X=0.

Экспериментальная часть

2-Оксотетрагидропиримидины IX, XI, XIII, XV. Смесь 0,1 моля мочевины и 0,05 моля замещенного дивинил- или метоксивинилкетона при энергичном перемешивании напревают до 80°, пропускают ток сухого хлористого водорода до тех пор, пока температура смеси не достигнет 120—130°. Нагревание продолжают еще 2 часа. После охлаждения реак-

инопную смесь обрабатывают 10%-ным раствором поташа. Выпавшие кристаллы отфильтровывают, промывают волой, ацетоном, эфиром.

2-Тиотетрагидропиримидины X, XII, XIV, XVI получены аналогично из 0,1 моля тиомочевины и 0,05 моля дивинил- или метоксивинилжетона. Константы полученных 2-оксо- и 2-тиотетрагидропиримидинов IX—XVI приведены в таблице.

2-Тиотетригидропиримидин XXIV получен аналогично из 7,9 г (0,05 моля) насыщенного метоксикетона XXIII и 7,6 г (0,1 моля) тиомоченны. Маслообразный 4-метил-6-изобутил-1,2,3,4-тетрагидропиримидинтион-2 (XXIV) промывают несколько раз эфиром. После двухдневного стояния при комитатной температуре вещество кристаллизуется. Выход 3 г (32,6%); т. пл. 197—198° (разл.) (уксусная кислота—ацетон). Найдено $^{\circ}$ /₀: C 58,70; H 8,70; N 15,22. $^{\circ}$ C₉H₁₆N₂S. Вычислено $^{\circ}$ /₀: C 58,62; H 8,51: N 15,00.

4-4-Диметил-6-винил-2,3,4,5-тетрогидропиримидинтион-2 (XXII). Смесь 4,3 г (0,025 моля) кетона XXI, 30 мл 25%-ной гидроокиси аммония и 6 капель 10 н серной кислоты кипятят при 95° в течение 8 часов. После охлаждения выпавшие кристаллы отфильтровывают и промывают водой. Выход пиримидинтнона-2 (XXII) 1,2 г (28,1%); т. пл. 170—171° (разл.) (спирт—вода). Найдено %: С 51,29; Н 6,96; N 16,37. Св1112 N2S Вычислено %: С 51,19; Н 7,14; N 16,66.

4,4-Диметил-6-этил-2-тиогексагидропиримидин (XVII). а) Раствор 1 г (0,006 моля) тетрагидропиримидинтиона-2 (X) в 20 мл укоусной кислоты гидрирован над Р1-катализаторюм. После отгонки растворителя получено 0,6 г (58,65%) продукта; т. пл. 238—239° (спирт—вода). Найдено $^{\circ}$ ₀: С 56,00; Н 9,18; N 16,07. С₈Н₁₆N₂S. Вычислено $^{\circ}$ ₀: С 55,81; Н 9,30; N 16,28. б) Из 0,2 г (0,0012 моля) тетрагидропиримидина-2 (XXII) получено 0,13 г (65,0%) XVII; т. пл. 239° (спирт—вода).

4-Метил-6-изобутил-2-тиогексагидропиримидин (XXV) получеч аналогично из 0,6 г (0,0033 моля) тиотетрагидропиримидина XVI. Выход 0,3 г ($50^{\circ}/_{\circ}$); т. пл. $141-143^{\circ}$ (разл.) (спирт—вода). Найдено $^{\circ}/_{\circ}$: С 56.98: Н 10.0; N 15.34. С_вН₁₈N₂S. Вычислено $^{\circ}/_{\circ}$: С 57.06; Н 9.68; N 15.05. б) Из 0,4 г (0,0022 моля) тетрагидропиримидинтиона-2 (XXIV) получено 0,14 г ($35.0^{\circ}/_{\circ}$) XXV; т. пл. $140-142^{\circ}$ (разл.) (спирт—вода). Смешанная проба этих образцов депрессии не дала.

4-Метил-4,6-диэтил-2-оксогексагидропиримидин (XVIII) получен аналогично из (0,006 моля) оксотетрагидропиримидина XI. Выход 0,8 г (78,12%); т. пл. 280—281° (из опирта). Найдено %: С 63,09; Н 10,41; N 16,64; С $_9$ Н $_{13}$ N $_2$ О. Вычиклено %: С 63,53; Н 10,59; N 16,47.

Алкилирование тетрагидропиримидинов X, XI. К смеси 1,1 г (0,0065 моля) 2-тиотетратидропиримидина X, 0,8 г гидроокиси калия и 3,8 мл воды при 40° по каплям добавляют 2,5 г (0,02 моля) диметилсульфата. Затем температуру смеси доводят до 85° и перемешивают в течение 5 часов. После охлаждения выпавшие кристаллы отфильтровывают, промывают водой и высушивают. Получено 0,8 г (62,50%) 1,3,4,4-тетраметил-6-вынил-2-тпо-1,2,3,4-тетрагидрюпиримидина (XIX). Т. пл.

Спединение	R	R'	R*	R'''	X	Дивинил- кетон	Метокси- кетон	Молекулярная формула	Выход, 0/0
1X	СН	CH ₃	н	Н	0	I	_	C ₈ H ₁₃ N ₂ O	90,80
IX	CH ₃	CH ₃	Н	Н	0	_	V	C ₈ H ₁₂ N ₂ O	92,10
X	CH ₃	CH ₃	Н	Н	S	I		C ₈ H ₁₂ N ₂ S	69,01
X	CHa	CH3	Н	11	S	-	v	C ₈ H ₁₂ N ₂ S	84,52
XI	CH ₃	C2115	Н	Н	0	_	VL	C ₂ H ₁₄ N ₂ O	96,38
XII	CH ₃	C ₂ H ₅	Н	Н	S		VI	C,H,N,S	75,82
XIII	пентаме	пентаметилен		Н	0	111	-	C11H16N2O	90,62
XIII	пентаметилен		H	Н	0		VII	C11H16N2O	83,33
XIV	пентаметилен		H	Н	S.	Ш	12	C11H16N2S	92.30
XIV	пентамо	H	Н	S		VII	C11H16N2S	81,73	
ΧV	CH ₃	Н	CHa	CH ₃	0		VIII	C ₅ H ₁₄ N ₂ O	66,26
XVI	CH ₃	Н	CIIa	CH ₃	S	-	VIII	C ₉ H ₁₄ N ₂ S	81,78

	А нализ, 10										
Т. пл.,		най	дено		вычислено						
°C	С	н	N	s	С	н	N	S			
293-295	62,71	7,72	18,47	_	63,16	7,89	18,42	-			
295—297	63,28	7,76	18,08	_	63,16	7.89	18,42				
250 — 251 разл.	56,76	7,23	16,64	18,80	57,14	7,14	16,67	19,02			
249—251 разл.	56,48	7,03	16,62	-	57,14	7,14	16,67	19.02			
232 -233	64,71	8,70	17,20	-	65,06	8,43	16.87	-			
153	59,87	7,81	15,52	18,00	59,34	7,69	15,38	17,58			
260-261	68,90	8,20	14,34	_	68,75	8,33	14.58	_			
260-261	68,45	8,50	15,00	-	68,75	8,33	14,58	_			
155-156	62,88	7,70	13,30	15,70	63,46	7,69	13,46	15,38			
155156	62,98	7,80	13,42		63,46	7,69	13, 16	15,38			
156—157	65,40	8,52	16,72	-	65,06	8,43	16,87	-			
90-92	58,78	7,54	15,35	16,97	59,34	7,69	15.38	17.58			

 $98-100^\circ$ (разл.) (спирт—вода). Найдено %: С 61,13; Н 7,96, N 14,35 С₁₀Н₁₆N₂S. Вычислено %: С 61,22; Н 8,16; N 14,29.

Аналогично из 1,66 г (0,01 моля) 2-оксотетрагидропиримидина XI и 1,2 г гидроокиси жалия в 5,7 мл воды и 4,4 г (0,035 моля) диметилсульфата получено 0,8 г (41,24%) 1,3,4-приметил-4-этил-6-винил-2-оксо-1,2,3,4-тетрагидропиримидина (XX). Т. пл. 249—251° (промыт водой, ацетоном и эфиром). Найдено %: С 67,96; Н 9,07; N 14,28. $C_{11}H_{18}N_2O$. Вычислено %: С 68,04; Н 9,28; N 14,43.

Диеновый синтез. Смесь 0,01 моля хорошо измельченного тетрагидропиримидина X,XI и 0,012 моля малеинового ангидрида в запаянной трубке напревают при 170—180° в течение 7 часов. Таким образом получен аддукт XXVI с 75,9% выходом. Не плавится до 340° (из спирта). Найдено $^{0}/_{0}$: N 10.32. $C_{12}H_{14}N_{2}O_{3}S$. Вычислено $^{0}/_{0}$: N 10,52. Аддукт XXVII с $88,050^{0}/_{0}$ выходом. Т. пл. $278-280^{\circ}$ (разл.) (из спирта). Найдено $^{0}/_{0}$: N 10,57. $C_{12}H_{18}N_{2}O_{4}$. Вычислено $^{0}/_{0}$: N 10,66.

Гидролизом (0,03 моля) аддуктов (XXVI, XXVII) 30 мл 10%-ной хлористоводородной кислоты при 90° в течение 3 часов получены соответствующие двухосновные кислоты: 5,6-дикарбоюси-8,9-дегидроциклогексано-2-тио-4,4-диметилгексагидропиримидин (XXVIII) с 62,5% выходом. Т. пл. 285° (разл.) (спирт—вода). Найдено %: С 51,00; Н 5,78; N 10,19. $C_{12}H_{16}N_2O_4S$. Вычислено %: С 50,70; Н 5,63; N 9,86. 5,6-Дикарбокси-8,9-дегидроциклогексано-2-оксо - 4 -метил-этилгексагидропиримидин (XXIX) с 56,47% выходом. Т. пл. 267—268° (разл.) (спирт—вода). Найдено %: С 55,17; Н 6,36; N 10,00. $C_{13}H_{16}N_2O_3$. Вычислено %: С 55,32; Н 6,38; N 9,93.

ՉՀԱԳԵՑԱԾ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՔԻՄԻԱ

XXIV. ՄԻ ՔԱՆԻ ՏԵՂԱԿԱԼՎԱԾ 2–0ՔՍՈ– ԵՎ 2–ԹԻՈՏԵՏՐԱՀԻԴՐՈՊԻՐԻՄԻԴԻՆՆԵՐԻ ՍԻՆԹԵՉ

n. v. bugusesur, v. 4. openruulu L v. 2. duerulsur

U. d. d. n. d. n. d.

3ույց է տրված, որ տեղակալված դիվինիլկետոնները I—IV և նրանց Համապատասխանող մեթօքսիվինիլկետոնները V—VIII միզանյութի կամ թիոմիզանյութի հետ քլորաջրածնի ներկայությամբ 2—3 ժամ 120—130° տաքացնելիս առաջացնում են համապատասխանաբար տեղակալված 2-օքսո- և 2թիոտետրահիդրոպիրիմիդիններ IX—XVI: 4,4-Դիմեթիլ-6-վինիլ-2-թիո- և
4-էթիլ-6-վինիլ-2-օքսո- 1,2,3,4-տետրահիդրոպիրիմիդինները (X, XI)
Pէ կատալիզատորի ներկայությամբ հիդրելով ստացվել են համապատասխան
հեջսահիդրոպիրիմիդինները XVII—XVIII: Միևնույն օրինակների վրա ցույց
է տրված, որ տետրահիդրոպիրիմիդինները IX—X^{*}I կալիումի հիղրօքսիդի
ներկայությամբ դիմեթիլսուլֆատով ենթարկվում են ալկիլման, առաջացնելով
համապատասխան դիալկիլածանցյալները XIX, XX, իսկ մալեինաթժվի անհիդ-

րիդի հետ մանում են դիենային սինքեզի մեջ, առաջացնելով համապատասխան ադուկտներ, որոնց հետագա հիդրոլիզով ստացվել են XXVIII և XXIX հրկհիմն թթուները։ Ստացված տեղակալված տետրահիդրոպիրիմիդինների կառուցվածքն ապացուցված է հանդիպակած սինթեղով և ինֆրակարմիր սպեկտրների միջոցով։ Սինթեզված 2-օքսո- և 2-թիոտետրահիղրոպիրիմիդինների որոշ հաստատունները բերված են աղյուսակում ։

ЛИТЕРАТУРА

- 1. Р. М. Хачатрян, С. К. Пиренян, С. А. Вартанян, Арм. хим. ж., 21, 836 (1968).
- 2. Р. М. Хачатрян, С. К. Пиренян, С. А. Вартинян, Арм. хим. ж., 23, 645 (1970).
- 3. С. А. Вартанян, С. К. Пиренян, Р. М. Хачатрян, Арм. хим. ж., 21, 177 (1968). 4. С. J. Cavallto, С. M. Martini, F. C. Nachod, J. Am. Chem. Soc., 73, 2544 (1951).
- 5. R. Zimmermann, H. Hotze, Angew. Chem., 75, 1025 (1963).