XXIV, № 7, 1971

синтез пестицидов

ЭТИЛОВЫЕ ЭФИРЫ О-∞-АЛКОКСИ-3,3,3-ТРИХЛОРЭТИЛГЛИКО ЛЕВЫХ КИСЛОТ

В. В. ДОВЛАТЯН и К. А. ЭЛИАЗЯН

Армянский сельскохозяйственный институт (Ереван)

Поступило 22 XII 1970

Этиловый эфир гликолевой кислоты с хлоралем в присутствии каталитических количеств пиридина образует карбэтоксиметилполуацеталь хлораля.

Продукт хлорирования последнего со спиртами претерпевает реакцию переэторификации с образованием этиловых эфиров О-а,3,3,3-тетрахлорэтилгликолевой кислоты

Между тем, α, β, β, β-тетрахлорэтилалкилэфиры реагируют с этиловым эфиром гликолевой кислоты с образованием этиловых эфиров О-α-алкокси-β, β, β-трихлорэтилгликолевых кислот.

Табл. 1, библ. ссылок 4.

Согласно нашим предыдущим опытам, хлораль с циангидринами альдегидов и кетонов, а также с ацетиленовыми диолами образует соответствующие неустойчивые полуацетали, которые при вакуум-перегонке разлагаются с превращением в исходные продукты [1]. Было интересно изучить взаимодействие хлораля с этиловым эфиром гликолевой кислоты. Опыты показали, что ожидаемый при этом карбэтоксиметиллолуацеталь хлораля может быть получен с удовлетворительными выходами только в присупствии каталитических количеств пиридина:

$$CCI_3CHO + HOCH_2COOC_2H_5 \xrightarrow{C_8H_8N} CCI_2CH(OH)OCH_2COOC_2H_5.$$

Полученный полуацеталь, в противолопожность полуащеталям, содерокащим циангруппу или тройную связь, при вакуум-перегонке устойчив. Каталитическое действие пиридина, по-видимому, обусловлено возникновением водородной связи между пиридином и этиловым эфиром гликолевой кислоты:

$$C_2H_5N\cdots H^+\cdots \overline{O}CH_2COOC_2H_5$$
.

В полученном таким образом активированном комплексе поляризация связи Н-О усилена, что способствует нуклеофильному присоединению к хлоралю по схеме:

С целью получення соединений с гербицидной активностью нами изучалась возможность синтеза на основе полученного полуацеталя этиловых эфиров а-алкокси-β,β,β-трихлорэтилгликолевых кислот:

которые, ввиду структурного родства с ранее синтезированными этиловыми эфирами О- α -N-ацетиламино- β , β , β -трихлорэтилгликолевой кислоты [2], могли представлять определенный интерес в качестве гербицидов.

Поскольку намеченные соединения являются полными смешанными ацеталями хлораля, нами были продприняты полытки применить описанные в литературе опособы их получения. Сотласно одному из известных опособов [3], указанные соединения образуются каталитической этерификацией полуацеталей хлораля по схеме:

CCI₃CHO
$$\xrightarrow{\text{HOR}}$$
 CCI₃CH(OH)OR $\xrightarrow{\text{HOR}'}$ CCI₃CH(OR')OR + H₂O.

По второму способу полуацетали хлораля превращают в соответствующие хлориды, переходящие в полные ацетали при напревании со спиртами при высокой температуре:

$$CCI_3CH(OH)OR \longrightarrow CCI_3CH(CI)OR \xrightarrow{HOR'} CCI_3CH(OR')OR.$$

Нами установлено, что первая из приведенных выше схем неприемлема для синтеза этиловых эфиров а-алкокси- β , β , β -прихлорэтилгликолевых кислот. Детально был изучен второй путь синтеза. Было установлено, что исходный полуащеталь под действием хлористого тионила и пиридина гладко превращается в этиловый эфир α , β , β , β -тетрахлорэтилгликолевой кислоты, который со спиртами не образует намеченных продуктов. Как показали опыты, при указанном взаимодействии не выделяется хлористый водород. Поэтому продукты реакции отличаются сравнительно высоким содержанием хлора. Вместе с тем, по своим физикохимическим константам полученные соединения резко отличаются от исходных веществ. Эти данные навели на мысль, что исходный этиловый эфир О- α , β , β -тетрахлорэтилгликолевой кислоты под действием спиртов претерпевает переэтерификацию, что приводит к получению алкиловых эфиров О- α , β , β , β -тетрахлорэтилгликолевой кислоты:

Кроме хороших аналитических данных и MR_D , строение этих эфиров было подтверждено встречным синтезом на примере амилового эфира α,β,β -тетрахлорэтилгликолевой кислоты по схеме:

$$\begin{array}{c} \text{CCI}_3\text{CHO} + \text{HOCH}_2\text{COQC}_5\text{H}_{11} & \xrightarrow{\text{SOCI}_3} \\ & \xrightarrow{\text{CCI}_3\text{CH}(\text{OH})\text{OCH}_2\text{COOC}_5\text{H}_{11}} & \xrightarrow{\text{SOCI}_3} \\ \end{array}$$

Результаты этих опытов указывают на то, что атом хлора в этиловом эфире $(0-\alpha,\beta,\beta,\beta$ -тетрахлорэтилгликолевой кислоты менее подвижен, чем в α,β,β -тетрахлорэтилалкилэфирах.

Это различие следует, по-видимому, объяснить уменьшением поляризации связи С—СІ в этиловом эфире 2,8,8,8-тетрахлорэтилгликолевой кислоты по причине электроотрицательной индукции карбонила жарботоксильной группы и ослаблением той же связи в 2,8,8,8-тетрахлорэтилалкилэфирах под действием электроположительной индукции алкильного радикала:

Исходя из этих соображений, справедливо было полагать, что α,β,β,β -тетрахлорэтилалкилэфиры с этиловым эфиром гликолевой кислоты будут реагировать легче, чем этиловый эфир О- α,β,β,β -тетрахлорэтилгликолевой кислоты. Действительно, в первом случае реакция протекает очень бурно, с выделением хлористого водорода и приводит к получению этиловых эфиров О- α -алкокси- β,β,β -трихлорэтилгликолевых кислот с низкими выходами:

Экспериментальная часть

Карбэтоксиметилполуацеталь хлораля. Смесь 6,8 г (0,046 моля) хлораля, 4,8 г (0,046 моля) этилового эфира гликолевой кислоты с т. кип. $152^{\circ}/680$ мл и 0,2 г пиридина нагревают на водяной бане в течение 5 часов и оставляют на ночь. На следующий день продукт реакции перегоняют и получают 7,8 г (67,8%) карбэтоксиметилполуацеталя хлораля с т. кип. $51^{\circ}/3$ мм; n_D^{20} 1,4710; d_D^{20} 1,3970. Найдено 0/0: C1 42,11. $C_0H_0Cl_3O_4$. Вычислено 0/0: C1 42,36. В ИК спектре соединения найдены полосы поглощения, характерные для следующих групп: 0/0 1044, 0/0, 1107, 0/00 1256, 0/00 1720 см0/01.

Этиловый эфир О-а, β, β, β-тетрахлорэтилгликолевой кислоты. К 13,8 г (0,054 моля) карбэтоксиметилполуацеталя хлораля в 25 мл абсолютного бензола при перемешивании и охлаждении по каплям приливают 9,3 г (0,078 моля) хлористого тнонила в 10 мл абсолютного бензола. Продолжают перемешивание и через 10 минут прибавляют 6,21 г (0,078 моля) пиридина. Реажционную смесь напревают на водяной бане до прекращения выделения сернистого газа (4 часа), затем к смеси приливают охлажденную воду, экстрагируют эфиром и эфирный экстракт высушивают над сернокислым магнием. После удаления растворителя остаток перегоняют и получают 9,7 г (65,5%) этилового эфира

O- α , β , β , β -тетрахлорэтилгликолевой кислоты с т. кип. $127^{\circ}/4$.и.и; n_D^{20} 1,4820; d_A^{20} 1,4553. Найдено O0: С1 52,80. $C_6H_8Cl_4O_3$. Вычислено O0: С1 52,59.

Алкиловые эфиры O-2, β , β ,-тетрахлорэтилгликолевой кислоты. Смесь 27 г (0,1 моля) этилового эфира α , β , β ,-тетрахлорэтилгликолевой кислоты и 0,2 моля алкилового спирта нагревают при 150° в течение 15 часов. По окончании реакции содержимое колбы перегоняют в вакууме. Выходы и физико-химические константы полученных алкиловых эфиров O- α , β , β , β -тетрахлорэтилгликолевой кислоты приведены в таблице. Чистота препаратов проверена хроматографированием на окиси алюминия второй степени активности: подвижная фаза — ацстон—петролейный эфир, 1:5, проявление йодом, значение R_1 в пределах 0,86—0,899.

CCI3CHXOCH2COOR

Таблици

32.0	1 Y			0/0			Анализ CI, °/о	
R	x	Молекулярная формула	Т. кип., °С/ <i>им</i>	Выход,	n _D ²⁰	d ₄ ²⁰	найдено	вычис-
C ₃ H ₇	CI	C7H10CI4O3	147/5	69,4	1,4810	1,4120	50,36	50,00
изо-С₃Н₁	CI	C7H10C14O3	133/5	75,8	1,4790	1,4075	50,21	50,00
C ₄ H ₉	CI	C ₈ H ₁₂ Cl ₄ O ₃	148/1	84,6	1,4770	1,3650	47,23	47,65
C5H11	C1	C ₉ H ₁₄ Cl ₄ O ₃	163/2	76,0	1,4764	1,3260	45,81	45,50
изо-С _в Н ₁₁	CI	C ₉ H ₁₄ Cl ₄ O ₃	156/2	70,0	1,4760	1,3230	45,30	45,50
ү-С1 крот.	CI	CaHaClaOa	163—165/4	60,0		_	53,12	53,70
C ₂ H ₅	C ₂ H ₅	C ₈ H ₁₃ Cl ₃ O ₄	137/2	38,1	1,4650	1,3012	37,92	38,10
C ₂ H ₅	C ₃ H ₇	C ₉ H ₁₅ Cl ₃ O ₄	148/2	34,0	1,4630	1,2674	36,01	36,28
C ₂ H ₅	C₄H,	C ₁₀ H ₁₇ Cl ₃ O ₄	159/2	35,8	1,4620	1,2320	34,26	34,63
C ₂ H ₅	изо-С ₅ Н ₁₁	C ₁₁ H ₁₉ Cl ₃ O ₄	166/3	41,2	1,4600	1,1982	32,85	33,12

Этиловые эфиры O- α -алкокси- β , β -трихлорэтилгликолевых кислот. Смесь 10,4 г (0,1 моля) этилового эфира гликолевой кислоты и 0,1 моля α , β , β -тетрахлорэтилалкилэфира при перемешивании нагревают при $145-150^{\circ}$ в течение 16 часов, после чего продукт реакции перегоняют в вакууме и получают этиловые эфиры O- α -алкокси-3, β , β -трихлорэтилгликолевых кислот, выходы и физико-химические константы которых приведены в таблице.

Амиловый эфир α -окси- β , β , β -трихлорэтилгликолевой кислоты. Смесь 8,0 г (0,054 моля) амилового эфира гликолевой кислоты, 8,1 г (0,054 моля) хлораля и 0,2 г пиридина нагревают на водяной бане в течение 5 часов и оставляют на ночь. На следующий день продукт реакции перегоняют в вакууме и получают 9,7 г (63,8%) амилового эфира α -окси- β , β , β -трихлорэтилгликолевой кислоты с т. кип. 84% жж;

 n_D^{20} 1,440, $d_4^{(2)}$ 1,1694. Найдено 0_0 : С1 35,93. С $_0$ Н $_{15}$ С1 $_3$ О $_4$. Вычислено 0_0 : С1 36,28.

Амиловый эфир α,β,β,β -тетрахлорэтилгликолевой кислоты. К 13 г (0,046 моля) этилового эфира α -окси- β,β,β -трихлорэтилгликолевой кислоты в 25 мл абсолютного бензола при перемешивании и охлаждении по каплям приливают 6,66 г (0,056 моля) хлористого тионила в 10 мл абсолютного бензола. Продолжают перемешивание и через 10 минут прибавляют 4,45 г (0,056 моля) пиридина. Реакционную смесь нагревают на водяной бане до прекращения выделения сернистого газа, затем к смеси приливают охлажденную воду, экстрагируют эфиром и высушивают над сернокислым магнием. После удаления растворителя остаток перегоняют и получают 9 г (81,7%) амилового эфира α,β,β -тетрахлорэтилгликолевой кислоты с т. кип. $165^\circ/7$ мм; n_D^{20} 1,4750; d_D^{20} 1,3220. Найдено d_D^{20} : C1 45,18. $C_0H_{14}Cl_4O_3$. Вычислено d_D^{20} : C1 45,51.

ՊԵՍՏԻՑԻԴՆԵՐԻ ՍԻՆԹԵԶ

O- α ፡ԱԼԿՕՔՍԻ $-3,\beta,\beta$ -SቦԻՔԼՈՐԷԹԻԼԳԼԻԿՈԼԱԹԹՈՒՆԵՐԻ ԷԹԻԼԱՅԻՆ ԷՍԹԵՐՆԵՐ

Վ. Վ. ԴՈՎԼԱԹՑԱՆ և Կ. Ա. ԷԼԻԱԶՑԱՆ

Udhnhnid

ույց է տրված, որ գլիկոլաթթվի էթիլային էսթերը պիրիդինի կատալիտիկ ջանակների ներկայությամբ ջլորալի հետ առաջացնում է ջլորալի կարբէթօջսիմեթիլկիստացետալ։ Վերջինիս ջլորման պրոդուկան ալկահոլների հետ փոխազդելիս ենթարկվում է վերաէսթերացման, առաջացնելով Ο-α,β,β,βտնտրաջլորէթիլգլիկոլաթթվի ալկիլային էսթերներ, մինչդեռ α,β,β,β-տնտթաջլորէթիլալկենթերները գլիկոլաթթվի էթիլային էսթերի հետ ռեակցիայի մեջ մտնելիս առաջացնում են Օ-α-ալկօջսի-β,β,β-տրիջլորէթիլգլիկոլաթթուների էթիլային էսթերներ։

ЛИТЕРАТУРА

- 1. В. В. Довлатян, Д. А. Костанян, Арм. хим. ж., 22, 596 (1969).
- 2. В. В. Довлатян, К. А. Элиавян, Арм. хим. ж., 21, 842 (1968).
- 3. Ш. Мамедов, Г. Лернер, ЖОХ, 32, 403 (1962).