XXIV, № 7, 1971

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542.91 +547.474.3

СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ ДИЭТИЛОВЫХ ЭФИРОВ АЛКИЛГЛИЦИДИЛМАЛОНОВЫХ КИСЛОТ

Э. Г. МЕСРОПЯН, З. Т. КАРАПЕТЯН и М. Т. ДАНГЯН

Ереванский государственный университет

Поступило 19 XI 1970

Описывается синтез новых оксиранов—аддуктов натриевых производных алкил (аллил) малоновых эфиров с эпихлоргидрином. Исследованы некоторые превращения алкил (аллил) глицидилмалоновых эфиров, приводящие к образованию замещенных увалеролактонов и спиро - у - дилактона.

Табл. 4, библ. ссылок 15.

Ранее сообщалось о получении оксиранов нового ряда и их производных [1]. Данная работа является продолжением этих исследований; в ней описан ряд новых оксиранов и некоторые их химические превращения.

В литературе имеется много сообщений о взаимодействии несимметричных α-окисей со спиртами [2—10]. Нам казалось интересным изучить порядок присоединения спирта к оксиранам нового ряда. С этой целью изучалась конденсация метилового спирта с оксиранами I в присутствии натрия.

•

В ИК спектре продукта присоединения ($R = C_4H_0$) обнаружены полосы поглощения при 1771 (СО в пятичленном лактоне), 1727 (сложноэфирная группа) и 1291—1232 см⁻¹ (С-О-С). На основании этих, а также аналитических данных и химических превращений установлена структура II продуктов присоединения; согласно правилу Красуского [11], оксигруппа присоединяется к наименее гидрогенизированному атому углерода. Структуру II подтверждает и то обстоятельство, что нами не обнаружены δ - лактоны, которые должны были бы образоваться при обратном порядке присоединения.

Щелочным гидролизом соединений II получены α-алкил-δ-меток си-γ-валеролактоны III.

 $R = H - C_3 H_2$, $H - C_4 H_0$, $H - C_5 H_{11}$.

При реакции оксиранов с эфирным раствором хлористого водорода [12] в основном получены а-алкил-а-карбэтокси-а-хлор-ү-валеролактоны IV, т. е. присоединение хлористого водорода происходит в соответствии с правилом Марковникова [13]. В случае соединения с пропильным радикалом нам удалось в малом количестве выделить также лактон V [14].

В ИК спектре лактона VI с R=C4H, обнаружены полосы поглощения при 1770 (СО в пятичленном лактоне), 1730 (сложноэфирная группа) 1228 см-1 (С-О-С). Строение VI подтверждено и щелочным гидролизом в описанные ранее [1] а-алкил-о-окси-т-валеролактоны, а также встречным синтезом; осадок хлористого натрия, образовавшийся при синтезе оксирана І и пропитанный им [1], обрабатывается серной кислотой и экстрагируется эфиром; при этом с низкими выходами получены лактоны VI:

$$! + \underset{\mathsf{NaCl}}{\mathsf{HOH}} \longrightarrow [\mathsf{I} + \mathsf{C}\overline{\mathsf{I}} + \mathsf{O}\overline{\mathsf{H}} + \overset{\scriptscriptstyle{+}}{\mathsf{N}} \longrightarrow \mathsf{NaOH} + \mathsf{IV}] \longrightarrow \mathsf{VI}$$

Ранее сообщалось о синтезе 2-ацетил-а'-оксиметил-ү,ү-спиродилактона [15]. Продолжая исследования в этом аспекте, мы синтезировали аллилглицидилмалоновый эфир IX. Кислотным гидролизом окиси был получен α-аллил-α-карбэтокси-д-окси-γ-валеролактон Х, который окислением перекисью водорода в среде уксусного ангидрида переведен в 2,2-диоксиметил-7,7-спиродилактон XI. Структура последнего подтверждена данными ИК спектроскопии [в спектре обнаружены полосы при 1741—1734 (С=О), 1232, 1195, 1045 (С—О—С) и 3433—3254 см—1 (ОН-спиртовая)] и встречным синтезом: при окислении окиси IX перекисью водорода в среде уксусного ангидрида выделен тот же спиро-7,7-дилактон XI.

Экспериментальная часть

Алкилглицидилмалоновые эфиры. Известным способом [1] получены новые оксираны. Константы и данные элементарных анализов приведены в таблице 1.

Tαδλυμα 1
(C₂H₅OCO)₂C(R')CH₂CH — CH₂

17		Т. кип.,	ая			MRD		Анализ, %			
R'	0/0		улярн яа	n _D ²⁰	d ₄ ²⁰	0	числено	01	3	2	
77 1000	Выход	°С/мм	Молекуля формула	- 5		найдено	B IN Y III C.	найдено	вычис	пайдено	BENTIC-
		100 1100									
C5H11		136—140/2	C15H26O5								
C7H15	54.3	149—151/0,5	C17H30O5	1,4456	1,0036	83,38	83,46	65, 12	64,96	9,42	9,55
C ₈ H ₁₇	55,4		C18H32O5								
CH ₂ =CHCH ₂ -	52,5	119121/1	C13H20O5	1,4540	1,0727	64,60	64,53	61,34	60,93	8,13	7,81
							1	10			100

а-Алкил-а-карбэтокси - 8-метокси-ү-валеролактоны. К смеси 23 мл метилового спирта и 0,23 г натрия добавляют 20,5 г (0,07 моля) амилглицидилмалонового эфира; реакционную смесь нагревают в течение 6 часов при 50°, отгоняют избыток спирта, остаток промывают водой, экстрагируют эфиром, эфирный экстракт высушивают безводным сульфатом натрия. После удаления эфира остаток разго-

няют в вакууме. Физико-химические константы и данные элементарных анализов приведены в таблице 2.

		Т. кни., °С!мм	Молекулярная формула			MF	S ^D	Анализ, ⁰ / ₀			
1000	Выход, 0/0						9	С		Н	
R				n ²⁰	d ₄ ²⁰	найдено	вычислено	найдено	вычис-	найдено	лено
C ₃ H,	65,2	135—140/2	C ₁₂ H ₂₀ O ₅	1,4470	1,0885	59,80	60,38	58,42	59,01	8,24	8,19
C ₄ H,	66,3	140-143/1	C13H22O5	1,4531	1,0779	64,70	65,00	61,02	60,46		
C ₅ H ₁₁	67,5	145—147/2	C141124O5	1,4540	1,0642	69,13	69,92	61,82	61,76	8,46	8,82

а-Алкил-о-метокси- γ - валероликтоны (щелочной гидролиз). Смесь 4,32 г едкого натра, 5,6 мл воды и 10 г (0,037 моля) а-амил-а-карбэтокси-о-метокси- γ -валеролактона нагревают на кипящей водяной бане в течение 4 часов, после чего добавляют 10 мл воды, экстрагируют эфиром, подкисляют соляной кислотой (на конго) и снова экстрагируют эфиром. Эфирные вытяжки высушивают над безводным сернокислым натрием. После удаления эфира остаток перегоняют в вакууме (табл. 3).

Таблица 3

Le L		Т. кип., °С/мм	88	n _D ²⁰	d ₄ ²⁰	M	RD	Анализ, °/0			
R	Выход, 0/0		Молекулярная формула			найдено	вычислено	найдено	вычис-	найдено	вычис-
C ₃ H ₇	59,2	124—125/1	C ₉ H ₁₆ O ₃	1,4495	1,0368	44,67	44,87	65,51	62,70	9,12	9,30
C ₄ H _e	54,5	125—126/1	C10H18O3	1,4500	1,0159	49,45	49,49	64,32	64,51	9,45	9,67
C ₅ H ₁₁	52,4	122—126/0,5	C ₁₁ H ₂₀ O ₃	1,4502	0,9900	54,28	54,11	65,98	66,00	9,85	10,00

а-Алкил-а-карбэтокси-б-хлор-ү-валеролактоны. К 10 г (0,035 мо-ля) амилглицидилмалонового эфира при охлаждении добавляют 10 мл 5,9 н эфирного раствора хлористого водорода. Реакционную массу оставляют в течение 48 часов при 20—22°, затем перегоняют в вакууме. Физико-химические констынты полученных соединений и данные элементарных анализов приведены в таблице 4.

Таблица 4

R				3,17		М	R_{D}	Анал	из. 0/0
	Выхол, 0/0	Т. кип., °С/мм	Молекулярная формула	n _D ²⁰	d ₄ ²⁰	найдено	вычислено	найдено	пено
C _a H ₇ *	50,2	160165/1	C11H17O4CI	1,4635	1,1497	59,56	58,98	13,61	14,29
C ₄ H _e	51,2	162-165/1	C ₁₂ H ₁₈ O ₄ Cl	1,4632	1,1241	64,33	63,60	12,88	13,52
C5H11	60,1	165—170/1	C ₁₃ H ₂₁ O ₄ CI	1,4641	1,1035	69,15	68,22	12,51	12,83

* В случае пропилового радикала нам удалось выделить 2-пропил-2-карбэтокси-3-окси-7-валеролактон с константами, соответствующими литературным данным [1].

Щелочный гидролиз α -алкил- α -карбэтокси- α -хлор- α -валеролак-тонов. Аналогично вышеописанному щелочному гидролизу, из 5,47 г (0,02 моля) α -бутил- α -карбэтокси- α -хлор- α -валеролактона, 3,4 г едкого натра и 3 мл воды получено 3 г α -бутил- α -окси- α -валеролак: она; т. кип. 148°/1 мм; α 0 1,4610 [1].

Из 7 г (0,02 моля) х-амил- α -карбэтокси- δ -хлор- γ -валеролактона, 3,4 г едкого натра и 3 мл воды получено 4,5 г х-амил- δ -окси- γ -валеролактона; т. кип. $160^{\circ}/1$ мм; $n_{\rm c}^{20}$ 1,4600.

Окисление аллилглицидилмалонового эфира. К 6,5 г (0,02 моля) аллилглицидилмалонового эфира по каплям добавляют 40 мл уксусного ангидрида с 14 мл перекиси водорода. Реакционную смесь нагревают при $55-65^{\circ}$ в течение 16 часов. После удаления избытка уксусного ангидрида остаток перегоняют в вакууме. Получено 3 г (54,5%) IX; т. кип. $225-230^{\circ}/1,5$ мм; n_D^{20} 1,4860; d_D^{20} 1,3285; MR_D найдено 46,51, вычислено 45,76. Найдено n_D^{00} : С 50,39, Н 5,95. n_D^{00} 0 Вычислено n_D^{00} 0: С 50,00; Н 5,55.

а-Аллил-а-карбэтокси- \mathfrak{F} -окси- \mathfrak{F} -валеролактон X. Смесь 9 г (0,03 моля) аллилглицидилмалонового эфира, 0,1 мл концентрированной серной кислоты, 25 мл воды нагревают при $78-80^{\circ}/_{\circ}$ в течение 3 часов. Затем нейтрализуют небольшим количеством поташа, экстрагируют эфиром. Эфирные вытяжки высушивают безводным сернокислым магнием. После удаления эфира остаток перегоняют в вакууме. Получено 4 г (56,1%) X; т. кип. $143-150^{\circ}/_{\circ}$,5 мм; \mathfrak{n}_{D}^{20} 1,4870; \mathfrak{d}_{4}^{20} 1,1529; М \mathfrak{R}_{D} найдено 55,88, вычислено 55,20. Найдено \mathfrak{n}_{0} : С 57,44; Н 7,44. \mathfrak{n}_{11}^{20} , Вычислено \mathfrak{n}_{0} : С 57,89; Н 7,01.

Окисление α -аллил- α -карбэтокси- γ -окси- γ -валеролактона. Аналогично вышеописанному, из 1 г лактона X, 2,9 мл перекиси водорода и 3 мл уксусного ангидрида получено 0,5 г (50,5%) XI; т. кип. 224—240°/1 мм; n^{20} 1,4865.

ԱԼԿԻԼԳԼԻՑԻԴԻԼՄԱԼՈՆԱ**ԲԲ**ՈՒՆԵՐԻ ԴԻԼԹԻԼԷՍ**ԲԵՐՆԵՐԻ ՍԻՆԲԵԶ** ԵՎ ՆՐԱՆՑ ՄԻ ՔԱՆԻ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

է. Գ. ՄԵՍՐՈՊՅԱՆ, Զ. թ. ԿԱՐԱՊԵՏՑԱՆ և Մ. Տ. ԴԱՆՂՑԱՆ

Udhnhnid

Աշխատանքում նկարագրված է նոր օքսիրանների սինթեղ՝ ալկիլ(ալլիլ)մալոնաթթուների դիէթիլէսթերների նատրիումական ածանցյալների և էսլիւլորհիդրինի փոխազդմածը։ Հետազոտված են ալկիլ(ալլիլ)գլիցիդիլմալոնաթթուների դիէթիլէսթերների որոշ փոխարկումները, որոնց արդյունքները հանդիսացել են տեղակալված Ղ-վալերալակտոններ և սպիրո-Ղ,Ղ-դիլակտոն։

Ստացված միացությունները և նրանց որոշ տվյալները ներկայացված են

չորս աղլուսակներում։

ЛИТЕРАТУРА

- 1. Э. Г. Месропян. З. Т. Карапетян, М. Т. Дангян, Арм. хим. ж., 22, 905 (1969).
- 2. Л. А. Мухамедова, Т. М. Малышко, Р. Р. Шагидуллин, Н. В. Тептина, ХГС 1968, 195.
- М. С. Малиновский, Окиси олефинов и их производные, Госхимиздат, Москва! 1961, стр. 152.
- A. Weissberger. A. Rosovsky, The Chemistry of Heterocyclic Compounds, N. Y.— London—Sydney, 1, 1964, 289.
- А. А. Петров, ЖОХ, 10, 981 (1940).
- 6. А. А. Тяжелова, Тр. Воронежск. ун-та, 9, 140 (1937).
- 7. А. Н. Пудовик, С. Г. Денисламова, ЖОХ, 27, 2363 (1957).
- 8. Л. А. Мухамедова, Т. М. Малышко, Изв. АН СССР, ОХН, 1964 2042.
- А. А. Петров, Сб. «Вопросы кимической кинетики, катализа и реакционной способности», Изд. АН СССР, 1955. стр. 782.
- 10. Л. А. Мухамедова, М. И. Кудрявцева, ХГС, 1968, 579.
- 11. К. А. Красуский, ЖРХО, 39, 460, 1969 (1907); А. А. Петров, Е. Н. Притула, ЖПХ, 28, 556 (1955).
- 12. Л. А. Мухамедова, Т. М. Мальшко, ХГС, 1968, 195.
- В. В. Марковников, ЖРХО, 8, 22 (1876); К. А. Красуский, ЖРХО, 32, 84 (1900);
 Вег., 39, 530 (1907).
- М. С. Малиновский, Окисн олефинов и их производные, Госхимиздат, Москва, 1961, стр. 196.
- 15. Э. Г. Месропян, Э. Т. Карапетян, М. Т. Дангян, Арм. хим. ж., 23, 714 (1970).