XXIV, № 5, 1971

УДК 542.91+547.8+547.824

ПОЛУЧЕНИЕ АЗОТСОДЕРЖАЩИХ ШЕСТИЧЛЕННЫХ ГЕТЕРОЦИКЛИЧЕСКИХ 4-АЛЬДЕГИДОВ

С. А. ВАРТАНЯН, А. С. НОРАВЯН, Л. О. АВЕТЯН и В. Н. ЖАМАГОРЦЯН Институт тонкой органической химии АН Армянской ССР (Ереван) Поступило 3 VI 1970

На основе 4-пиперидонов разработан новый метод синтеза пиперидин-4-альдегидов.

Табл. 2, библ. ссылок 3.

В течение последних лет пиперидиновые соединения нашли широкое применение в синтезе биологически активных соединский и лежарственных препаратов [1]. Настоящая работа посвящена разработке общего метода синтеза ранее неизвестных пиперидин-4-альдегидов. Последние являются хорошими исходными соединениями для получения новых лекарственных препаратов. Синтез этих альдегидов нами осуществлен на базе доступных исходных продуктов—4-пилеридонов.

При действии этилхлорметилового эфира на замещенные 4-пиперидоны I—XI в присутствии металлического магния в растворе тетратидрофурана с хорошими выходами получаются ожидаемые спирты XII—XXII. Установлено, что эти спирты, аналогично другим α-алкоксиспиртам [2], при нагревании в растворе муравьиной жислоты при 100—101° с последующим перемешиванием с серной кислотой при 0° дают соответствующие альдегиды XXIII—XXXII.

I, XIII, XXIII, $R=R_1=R_2=CH_3$, $R_3=R_4=H$; II, XIII, XXIV, $R=R_1=R_3=CH_3$, $R_2=R_4=H$; III, XIV, XXV, $R=R_2=H$, $R_1=R_3=R_4=CH_3$; IV, XV, XXVI, $R=R_1=R_3=R_4=CH_3$, $R_2=H$; V, XVI, XXVII, $R=R_1=CH_3$, $R_2=C_2H_5$, $R_3=R_4=H$; VI, XVIII, $R=CH_3$, $R_1=R_3=R_4=H$, $R_2=uso-C_3H_7$; VII, XVIII, XXVIII, $R=R_1=R_3=CH_3$, $R_2=C_3H_5$, $R_4=H$; VIII, XIX, XXIX, $R=R_1=CH_3$, $R_2=C_3H_7$, $R_3=R_4=H$; IX, XX, XXX, $R=C_4H_9$, $R_1=R_3=CH_3$, $R_2=C_2H_5$, $R_4=H$; X, XXII, XXXII, $R=C_6H_5CH_2$, $R_1=CH_3$, $R_2=C_2H_5$, $R_3=R_4=H$; XI, XXIII, XXXII, $R=R_1=CH_3$. $R_2=H$, $R_2=R_3=CH_3$, $R_3=R_4=H$; XI, XXIII, $R=R_1=CH_3$. $R_2=H$,

Армянсьий химический журнал, XXIV, 5-4

ИК спектры спиртов XII—XXII указывают на наличие сильно выраженной межмолекулярной водородной связи.

Экспериментальная часть

Исходные 4-пиперидоны синтезированы известным опособом [3]. 1-Метил-2-изопропил-4-пиперидон (VI). Из 100 г 1-метокси-6-метил-4-гептен-3-она, 130 мл 25%-ного вощного раствора метиламина нагреванием в течение 4 часов при 80° получено 58,5 г (58,9%) пиперидона VI; т. кип. 70—71°/3 мм; n_2^{20} 1,4630; d_2^{20} 0,9300; MRD найдено 45,96, вычислено 45,51. Найдено 0/0: N 9,36. С₉Н₁₇NO. Вычислено 0/0: N 9,02. Т. пл. пикрата 156—158°. Найдено 0/0: N 14,76. С₁₅Н₂₀N₄O₈. Вычислено 0/0: N 14,58. Т. пл. 2,4-динитрофенилгидразона 89,5—91°. Найдено 0/0: N 21,14. С₁₅Н₃₁N₅O₄. Вычислено 0/0: N 20,84.

1-Бензил-2-метил-2-этил-4-пиперидон (X). Смесь 27 г (0,19 моля) 2-метил-2-этилтетрапидропиран-4-она, 19,33 г (0,19 моля) свежеперегнанного бензиламина, 70 мл диоксана и 20 мл воды кипятилась с обратным холодильником 6 часов, затем подкислялась соляной кислотой до кислой реажции. Вода и диоксан отопнаны в небольшом вакууме. Нейтральные продукты экстрагированы эфиром. Водный раствор органических оснований нейтрализован поташом, экстрагирован эфиром и высушен сульфатом масния. После удаления эфира остаток разогнан в вакууме. Получено 18,7 г (42,0%) пиперилона X; т. кип. 149—151°/5 мм; n_D^{20} 1,5290; d_D^{20} 1,0047; MRD найдено 66,15, вычислено 65,00. Найдено o_0^{1} : N 6,11. o_0^{1} 1,72. o_0^{1} 1,0047; MRD найдено 66,15, пл. пикрата 169—171°. Найдено o_0^{1} N 12,72. o_0^{1} 1,24. o_0^{1} 1,25% o_0^{1} 1,24. o_0^{1} 1,32. Вычислено o_0^{1} N 17,44. o_0^{1} 1,34. Вычислено o_0^{1} 1,44. o_0^{1} 1,34. Вычислено o_0^{1} 1,34. o_0^{1} 1,34. Вычислено o_0^{1} 1,34. o_0^{1} 1,35% o_0^{1} 1,36.

Замещенные 4-этоксиметил-4-пиперидолы (XII—XXII). 4,8 г (0,2 г-ат) металлического матния с 0,02 г HgCl₂ омачивалось сухим тетрагидрофураном и добавлялось 4 мл хлорметилэтилового эфира. Одновременно с началом реажции по каплям вносилось 9,5 г (0,1 моля) хлорметилэтилового эфира, растворенного в равном объеме тетрагидрофурана, и 0,1 моля замещенного 4-пиперидона в том же объеме тетрагидрофурана. Хлорметиловый эфир подавался с такой скоростью, чтобы температура реажции поддерживалась в пределах 55—60°. После окончания реакции смесь при комнатной температуре перемешивалась в течение 6 часов и оставлялась на ночь, затем перемешивалась еще 4 часа и гидролизовывалась насыщенным раствором хлористого аммония. Верхний слой отделялся, водный экстрагировался (2 раза) эфиром по 30 мл, эфирный экстракт соединялся с верхним слоем, высушивался сульфатом наприя. После отгонки растворителя остаток перегонялся в вакууме. Константы полученных соединений приведены в таблице 1.

Замещенные 4-пиперидинальдегиды (XXIII—XXXII). К 0,064 моля замещенного 4-этоксиметил-4-пиперидола (XII—XXII) добавлялось 35 мл муравьиной кислоты; смесь нагревалась до 100—101° в течение

Соединение	R	R ₁	R ₂	R ₃	R ₄	Выход, %	Молеку- лярная формула
XII	CH ₃	CH ₃	CH ₃	Н	Н	71,90	C ₁₁ H ₂₃ NO ₂
XIII	CH ₃	CH ₃	Н	CH ₃	Н	27,30	C11H23NO2
XIV	Н	СН	Н	CH ₃	CH ₃	46,20	C11H23NO2
XV	CH ₃	CH ₃	Н	CH ₃	CH ₃	36,90	C12H25NO2
					7		
XVI	CH ₃	CH ₃	C ₃ H ₅	H	Н	25,70	C ₁₃ H ₃₅ NO ₃
XVII	CH ₃	C ₃ H ₇	Н	Н	Н	27,60	C13H25NO2
XVIII	CH3	CH ₃	C ₂ H ₅	CH ₃	н	20,60	C13H27NO2
XIX	CH ₃	CH ₃	C ₃ H ₇	H	Н	25,50	C ₁₃ H ₂₇ NO ₂
XX	C ₄ H ₉	CH ₃	C ₂ H ₅	CH ₃	H	36,10	C ₁₆ H ₃₃ NO ₂
XXI	C ₆ H ₅ CH ₂	CH ₃	C ₂ H ₅	Н	н	42,10	C18H29NO2
XXII	CH ₃	СНа	H	тетрам	етилен	42,06	C14H27NO2

HOCH₂OC₂H₅
R₃
R₄
R₁R₂

			MR _D		0/0N			0/6	N
Т. кип., °С/мм	n ²⁰	d ²⁰	найдено	вычислено	найдено	вычистепо	Т. пл. пикрата, °С	найдено	вычислено
123—125/10	1,4490	0,9288	58,13	57,90	6,69	6,96	134	13, 42	13,02
85-89/3	1,4630	0,9720	57,04	57,90	6,80	6,96	160-62	13,24	13,02
110113/5	1,4680	0,9445	59,25	57,90	7,23	6,96	124-24.5	12,95	13,02
117—120/5	1,4620	0,9975	59,34	62,52	6,10	6,51	149.5-50	12,24	12,60
104—106/2	1,4560	0,9784	59,82	62,52	6,90	6,51	CH ₃ J 69 –70	3,86	3,93
122124/5	1,4450	0,9290	61,68	62,52	6,19	6,51	142-43	12,86	12,60
100-0,2/3	1,4750	0,9770	66,11	67,14	5,95	6,11	148—50	12.58	12,22
106—108/6	1,4650	0,9786	64,86	67,14	5,72	6,11		-	_
103-104/4	1,4680	0,9357	80,63	80,99	5,01	5,16	122-24	11,80	11,66
165-167/4	1,5310	1,0318	88,36	86,63	4,58	4,81	13839	10,76	10,97
110-113/4	1,5050	1,0083	71,03	69,56	5,85	5,81	136 – 37	11,80	11,91

Соединение	R	R ₁	R ₂	R ₃	R ₄	Выход, 0/0	Молеку- лярная формула
xxIII	CH ₃	СН3	СН3	н	н	62,85	C ₉ H ₁₇ NO
XXIV	CH ₃	CH ₃	Н	CH ₃	Н	86,47	C ₉ H ₁₇ NO
XXV	Н	CH ₃	н	CH ₃	CH ₃	83,51	C ₉ H ₁₇ NO
XXVI	CH ₂	CH ₃	H	CH ₃	CH ₃	64,88	C ₁₀ H ₁₉ NO
XXVII	CH ₃	CH ₃	C ₂ H ₅	Н	н	97,80	C ₁₀ H ₁₉ NO
XXVIII	CH ₃	CH ₃	C ₂ H ₅	CH3	Н	69,20	C ₁₁ H ₂₀ NO
XXIX	CH ₃	CH ₃	C ₃ H ₇	Н	H	53,93	C11H20NO
XXX	C ₄ H ₀	CH ₃	C ₃ H ₅	CH ₃	H	72,60	C ₁₄ H ₂₆ NO
XXXI	CH ₃ C ₆ H ₅	CH ₃	C ₂ H ₅	Н	Н	61,75	C ₁₆ H ₂₃ NO
XXX!I	CH _a	CH ₃	н	тетраметн- лен		86,52	C ₁₂ H ₂₁ NO

$$R_{3} \underbrace{\bigcap_{R_{1}R_{2}}}_{R} R_{1}R_{2}$$

Т. кип., °С/.и.и	n ²⁰	d ²⁰	ив й дено	вычислено Z	Т. пл. пикрата, °C	найдено	вычислено	Т. пл. 2,4-ли- интрофенил- гидразона, °С	наплено	Вычислено
90 - 92/5	1,4660	0,9899	8,60	9,04		_	_	163 - 64	21,08	20,88
110 12/7	1,4780	1,0037	១,05	9,04	153 – 54	14,22	14,58	234 35	21,12	20,88
95 96/5	1,4760	0,9722	8,69	9,04	10203	15,00	14,58	152-53,5	20,82	20,88
11416,4	1,4710	1,0112	8,02	8,29	-	_	-	159-60,5	19,46	19,17
92-93/2	1,4615	0,9696	8,46	8,29	100-01	14,49	14,07	159 -60	19,04	19,17
103 05/9	1,4760	1,0104	7,49	7,69	139-40	13,45	13,62	118-20	19,56	19,33
99/5	1,4620	0,9754	7,36	7,69	_	-	_	143-144	19,22	18,81
11012/5	1,4700	0,9896	6,40	6,25	97—98	13,00	12,63	199-200	17,09	17,30
135 - 38/4	1,5150	1,0503	5,64	5,71	146-46,5	11,64	11,78	192,5-94	16,57	16,46
104 - 06/5	1,5080	1,0178	7,44	7,18	134-35	13,21	13,20	205 – 206	18,33	18,66

3,5 часов, затем охлаждалась до 0°, к ней добавлялось 30 мл 0,5 н раствора серной кислоты и смесь перемешивалась в течение 3 часов. Верхний слой отделялся, водный несколько раз экстрагировался эфиром, экстракт присоединялся к основному раствору, который нейтрализовывался раствором бикарбоната натрия и высушивался сульфатом натрия. После отгонки эфира остаток перегонялся в вакууме. Константы полученных альдегидов приведены в таблице 2.

ԱԶՈՏ ՊԱՐՈՒՆԱԿՈՂ ՎԵՑԱՆԴԱՄԱՆԻ ՀԵՏԵՐՈՑԻԿԼԻԿ 4-ԱԼԴԵՀԻԴՆԵՐԻ ՍՏԱՑՈՒՄ

Ս. Հ. ՎԱՐԴԱՆՅԱՆ, Ա. Ս. ՆՈՐԱՎՑԱՆ, Լ. Հ. ԱՎԵՏՑԱՆ Ե Վ. Ն. ԺԱՄԱԳՈՐԾՑԱՆ

Udhnhnid

Տետրահիդրոֆուրանի միջավայրում HgCl₂-ի ներկայությամբ Լիօքսիմերիլբլորերերի, մազնեղիումի և տեղակալված 4-պիպերիդոնի փոխազդմամբ ստացված են 4-պիպերիդոլներ (XII—XXII)։

Ցույց է տրված, որ այս պիպերիդոլները՝ մրջնաթթվի լուծուլթում 100—
101° տաջացնելիս և ապա 0°-ում ծծմբական թթվի հետ խառնելիս ենթարկվում են դեհիդրատացման. որին հաջորդում է ստացված միջանկյալ վինիլային
եթերի հիդրոլիդը, այդ կերպ ստացվում են տեղակալված պիպերիդինային
4-ալդեհիդներ (XXIII—XXXII)։

ЛИТЕРАТУРА

- 1. A. Ziering, L. Berger, S, Helneman, J. Lec, J. Org. Chem., 12, 894 (1947); L. Berger, A. Ziering, J. Lec, J. Org. Chem., 12, 904 (1947); A. Ziering, J. Lee, J. Org. Chem., 12, 911 (1947); И. Н. Назаров, И. С. Простяков, И. И. Михеева, Мех. пром. СССР, 6, 26 (1960).
- 2. Id. Normant, C. Crisan, Bull. soc. chim. Fr., 1959, 459.
- 3. И. Н. Назаров, В. А. Руденко, Изв. АН СССР, ОХН, 1948, 610; С. А. Вартанян В. Н. Жамагорцян, А. С. Норавян, Изв. АН Арм. ССР. ХН, 16, 391 (1963).