XXIV, № 4, 1971

УДК 542.91+632.938

синтез пестицидов

2-ЦИАНМЕТИЛОКСИ-4.6-бис-АЛКИЛ (ДИАЛКИЛ) АМИНО-симм-ТРИАЗИНЫ И НЕКОТОРЫЕ ИХ ПРЕВРАЩЕНИЯ

В. В. ДОВЛАТЯН н К. А. ЭЛИАЗЯН

Армянский сельскохозяйственный институт (Ереван)

Поступило 29 V 1970

Действием цианметилирующей смеси (формальдегид и цианистый натрий) на хлористые траметил (4,6-бис-алжил (диалкил) амино-сими-триазины. 2цианметилокси-4,6-бис-алжил (диалкил) амино-сими-триазины. Изучены их некоторые превращения, синтезированы соответствующие этиловые эфиры, амиды, кислоты и оксипроизводные.

Табл. 5. библ. ссылок 5.

Из числа возможных гербицидов на основе производных симм-триазина, содержащих циангрушту, в патентной литературе описаны 2,4-бисалкил (диалкил) амино-6-хлор-симм-триазины [1,2].

Известно, что замена атома хлора в производных симм-триазина на алкоксильную группу зачастую приводит к усилению избирательности гербицидного действия препаратов (симетон, прометон, атратон) [3.4]. Например, препарат атратон рекомендован для применения в качестве избирательного гербицида в посевах льна, хлопчатника, гороха и некоторых овощей.

Исходя из этих данных, было интересно получить производные симмтриазина, в которых циангруппа сочеталась бы с эфирной функцией. В этой связи в качестве новых гербицидов нами синтезированы 2дианметилокси—1,6-бис-алкил (диалкил) амино-симм-приазины с общей формулой I.

Известно, что замена подвижного атома хлора на цианметилоксигрушну может быть легко осуществлена применением формальдегида и цианистого натрия или калия. Эти соединения в качестве цианметилирующей смеси успешно применяются, в частности, при превращении хлорангидридов кислот в соответствующие цианметиловые эфиры [5].

Опыты показали, что 2-хлор-4,6-бис-алкил (диалкил) амино-симмтриазины, вопреки нашим ожиданиям, с цианметилирующей смесью практически не реагируют. С целью повышения подвижности атома хлора этих соединений последние под действием триметиламина в среде эфира или диметилформамида были превращены в соответствующие четвертичные соли. Некоторые из этих солей указаны в патентной литературе [1], однако без приведения способов их получения и свойств. Было установлено, что эти соли в растворах чрезвычайно легко подвергаются пианметилированию и с высокими выходами образуют ожидаемые продукты:

Строение полученных соединений было доказано ИК спектроскопически: найдены полосы поглощения при частотах, характерных для групп $C \equiv N$ (2250), C-O-C (1190—1239 $c.u^{-1}$).

Осуществлены некоторые превращения этих возможных гербицидов. Действием спирта и хлористого водорода на эфирные растворы цианметилоксипроизводных симм-триазина получены гидрохлориды иминоэтиловых эфиров, которые разлагаются водным раствором бикарбоната натрия в этиловые эфиры 4,6-бис-алкил (диалкил) амино-симм-триазинил-2-оженуксусных кислот:

Последние при продолжительном стоянии с водным аммиаком при комнатной температуре переходят в амиды:

Под действием едкого кали на эфиры III в среде этилового опирта вместо ожидаемых кислот в результате переэтерификации образуются этоксипроизводные по схеме:

В связи с этим затруднением изучался также кислотный гидролиз соединений I, при котором следовало ожидать образования триазинилоксиуксусных кислот. Однако опыты показали, что под действием концентрированной соляной кислоты и при температуре кипящей водяной ба-

ни исходные цианметилоксипроизводные подвергаются глубокому гидролизу и образуют 2-окси-4,6-бис-алкил (диалкил) амино-симм-триазины:

Оказалось, что расщепление алкоксипроизводных симм-триазинов по месту эфирной группы под действием соляной кислоты является их общим свойством. Так, например, в аналогичных условиях 2-алкожсибис-алкил (диалкил) амино-симм-приазины легко гидролизуются в 2-оксипроизводные:

$$\begin{array}{c|c} OR & & \\ N & N & \\ R'''R''N & NNRR' & \longrightarrow & IV \end{array}$$

Легкость, с которой алкокси-симм-триазины образуют соответствующие оксипроизводные, послужила основанием разработки нового препаративного способа их получения. С целью распространения этой реакции на производные симм-триазина со сложноэфирной функцией необходимо было получить 4,6-бис-алкил (диалкил) амино-симм-триазинил-2-ацетаты калия путем взаимодействия 2-хлорпроизводных с ацетатом калия, однако при этом получились соответствующие оксипроизводные, которые могли образоваться по схеме:

Установлено, что указанный способ успешно может быть применен только для получения 2-оюси-4,6-бис-алкиламино-симм-триазинов, поскольку бис-диалкиламинопроизводные под действием ацетата калия в среде диметилформамида практически не взаимодействуют. Так, 2-хлор-4,6-бис-этиламино-симм-триазин (симазин) в указанных условиях с 80,0% выходом дает 2-окси-4,6-бис-этиламино-симм-триазин, в то время

как 2-хлор-4,6-бис-диэтиламино-симм-триазин в аналогичных условиях не реагирует.

Поскольку при кислотном гидролизе исходных цианметилоксипроизволных не образуются намеченные нами кислоты, был изучен их щелочной гидролиз. Было установлено, что при кратковременном действии 10%-ного водного раствора едкого кали при 100—110° цианметилоксипроизводные легко омыляются с образованием ожидаемых кислот:

Описанные соединения были испытаны в качестве средств корнеобразования теренков растения фасоли по методу Турецкой. Результаты испытаний показывают, что наиболее активным стимулятором в ряду синтезированных соединений является 4.5-сис-диэтиламино-симм-трназинил-2-оксиуксусная кислота. При применении 0.005%-ного водного раствора калиевой соли этой кислоты количество корней черенков фасоли в 2 раза увеличивается по сравнению с контрольным вариантом.

Испытаны также цивиметилоксипроизводные симм-тривзина. Данные наблюдений, проведенных над подопытными растениями, показывают, что в ряду 2-цивиметилокси-4,6-бис-алкил (дивлкил) амино-симм-тривзинов наиболее фитотоксичным оказалось 4-этиламино-6-изопропиламинопроизводное. Последнее по гербицидной активности в отношении пшеницы и овсюга несколько уступает симазину, но в той же мере преносходит симетон. Фитотоксичность остальных препаратов этот ряда сравнительно слаба.

В противоположность указанным препаратам, 4-этиламино-6-изопропиламино-2цианметилокси-симм-триазин стимулирует рост растений кукурузы: вес надземной массы, по сравнению с контролем (100%), составляет при дозе 3 кг/га 191,4, а при 5 кг/га 254.8%.

Экспериментальная часть

Хлористый триметил-(4,6-бис-диэтиламино-симм-триазинил-2) аммоний. К 10,3 г (0,04 моля) 2-хлор-4,6-бис-диэтиламино-симм-триазина в 30 мл абсолютного эфира при охлаждении и перемешивании прибазляют 2,4 г (0,04 моля) триметиламина в 20 мл абсолютного эфира. Смесь оставляют на ночь, выпавший осадок отфильтровывают, промывают эфиром и высушивают в вакуум-эксикаторе над серной кислотой. Выход 10,5 г (83,0%) хлористого триметил-(4,6-бис-диэтиламино-симм-триазинил-2) аммония с т. разл. 139°. Найдено %: N 26,72. С₁₄Н₂₉N₆Cl. Вычислено %: N 26,54.

Аналогично получают другие хлористые триметил-(4,6-бис-алкил-(диалкил) амино-симм-триазинил-2) аммонии (табл. 1).

2-Цианметилокси-4,6-бис-диэтиламино-симм-триазин. К цианметилирующей смеси, полученной из 1,5 г (0,03 моля) цианистого натрия и 2,25 г (0,03 моля) 40%-ного формалина в 2 мл воды при охлаждении и перемешивании по каплям прибавляют 8 г (0,025 моля) хлористого триметил-(4,6-бис-диэтиламино-симм-триазинил-2) аммония, растворенного в 8 мл воды. Реакционную смесь перемешивают еще 2 часа при комнатной

температуре, затем прибавляют 10 мл воды, осадок отфильтровывают, промывают водой и высушивают на воздухе. Выход 6,24 ϵ (94,7%) ($R=R'=R''=C_3H_5$) с т. пл. 52°. Найдено $^{0}/_{0}$: N 30,60. $C_{13}H_{22}N_{6}O$. Вычислено $^{0}/_{0}$: N 30,21.

Аналогично получают другие соединения I (табл. 1).

Таблица 1

						0/0		Анализ N, º/o	
х	R	R'	R''	R'''	Молекулярная формула		Т. пл., °С	найдено	лено
N(CH ₂) ₃ Cl	н	C ₂ H ₅	Н	C ₂ H ₅	C ₁₀ H ₂₁ N ₆ Cl	70,0	182	32,15	32,24
N(CH ₃) ₃ Cl	н	C ₂ H ₅	Н	изо-С ₃ Н ₇	C11H23N6C1	74,2	177	30,95	30,60
N(CH ₃) ₃ Cl	CH ₃	CH ₃	CH ₃	CH ₃	C10H21NeC1	70,0	168—170	32,29	32,24
N(CH ₃) ₃ CI	C ₂ H ₅	C ₁₄ H ₂₉ N ₆ Cl	83,0	139	26,72	26,54			
OCH,CN	Н	C ₂ H ₅	Н	C ₂ H ₅	C ₉ H ₁₄ N ₆ O	93,6	118—119	38,07	37,83
OCH ₂ CN	н	C ₂ H ₅	H	изо-С ₃ Н ₇	C10H16N6O	86,0	94—95	35,80	35,59
OCH ₂ CN	CH,	CH ₃	CH ₃	CH ₃	C ₉ H ₁₄ N ₆ O	94,8	115—117	37,67	37,83
OCH,CN	C ₂ H ₅	C ₁₃ H ₂₂ N ₆ O	94,7	52	30,60	30,21			

Этиловый эфир 4,6-бис-этиламино-симм-триазинил-2-оксиуксусной кислоты. Через смесь 1,11 г (0,004 моля) соединения I (R=R''=H; $R'=R'''=C_2H_5$) и 0,28 г (0,006 моля) абсолютного этанола в 20 мл абсолютного эфира пропускают при охлаждении смесью лед-поваренная соль ток сухого хлористого водорода до насыщения. Оставляют на ночь, выпавший гидрохлорид иминоэтилового эфира 4,6-бис-этиламино-симм-триазинил-2-оксиуксусной кислоты растворяют в воде и нейтрализуют содой. Выпавший этиловый эфир указанной кислоты отфильтровывают и высушивают на воздухе. Выход 1,18 г (88,1%) III (R=R''=H; $R'=R'''=C_2H_5$) с т. пл. 142°. Найдено %: N 25,50. С₁₁ $H_{19}N_5O_3$. Вычислено %: N 26,02.

Аналогично получают другие соединения III (табл. 2).

Амид 4,6-бис-этиламино-симм-триазинил-2-оксиуксусной кислоты. Смесь 0,38 г (0,0014 моля) соединения III (R=R''=H; $R'=R'''=C_2H_5$) и 4 мл 25%-оной гидроокиси аммония оставляют при комнатной температуре на 12 часов. Осадок отсасывают и высушивают на воздухе. Выход 0,34 г (95,5%); т. пл. 167°. Найдено %: N 34,82. $C_9H_{18}N_8O_9$. Вычислено %: N 34,54.

Аналогично получают другие амиды кислот V (табл. 3).

Действие спиртового едкого кали на соединения III. К 1,0 г $(0,0037\,$ моля) III $(R=R''=H;\;R'=R'''=C_2H_5)$ в 3 мл абсолютного эта-

Таблица 2

R	R'	R"	R'''	Молекулярная формула	Выход, 0/0	Т. пл., °С	Анализ	вычис.
Н	C ₂ H ₅	Н	C ₂ H ₅	C ₁₁ H ₁₉ N ₅ O ₃	88,1	142	25,50	26,02
Н	C ₂ H ₅	Н	изо-С ₃ Н ₇	C12H21N5O3	85,1	111	24,42	24.73
CH ₃	CH3	CH ₃	CH ₃	C11H19N5O3	86,3	85	26,12	26,02
C ₂ H ₅	C ₂ H ₅	C₂H₅	C ₂ H ₅	C ₁₅ H ₂₇ N ₅ O ₃	86,1	66—8	21,73	21,53

Таблица 3

R	R'	R''	R'''	Молекулярная формула	Выход, 9/0	т. пл., °С	Нажиз N, 0/0 ВМАШС- лено	
Н	C ₂ H ₅	Н	C ₃ H ₅	CoH10NO	95,3	167	34,32	34,54
Н	C₂H₅	Н	изо-С ₃ Н ₇	C10H18N6O2	83,3	176	33,27	33,07
CH ₃	CH ₃	СН	CH ₃	C ₉ H ₁₆ N ₆ O ₂	94,4	220	35,00	34,54
C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	C ₁₃ H ₂₃ N ₆ O ₂	93,4	100	28,80	28,57
H CH ₃	C ₂ H ₅ CH ₃	н сн,	изо-С ₃ Н ₇ СН ₃	C ₁₀ H ₁₈ N ₈ O ₂ C ₉ H ₁₆ N ₆ O ₂	83,3 94,4	176 220	33,27 35,00	33 34

нола при охлаждении и перемешивании по каплям приливают 0,26 г (0,0046 моля) едкого кали в 3 мл абсолютного этанола. Смесь нагревают на кипящей водяной бане в течение 4 часов, отгоняют половину спирта, остаток растворяют в воде и подкисляют. Выход 0,6 г (75,6%) 2-этокси-4,6-бис-этиламино-симм-триазина с т. пл. 118—120°. Найдено %: N 33,01. $C_9H_{17}N_5O$. Вычислено %: N 33,17.

2-Окси-4,6-бис-диэтиламино-симм-триазин. Смесь 2 г (0,007 моля) соединения I ($R=R'=R''=R'''=C_2H_5$) и 8 мл 35^0 /₀-ной соляной кислоты нагревают с обратным холодильником на кипящей водяной бане в течение 4 часов. По окончании реакции смесь упаривают почти досуха, добавляют 10 мл воды, отфильтровывают и фильтрат нейтрализуют содой, выпавший осадок отсасывают, высушивают на воздухе. Выход 1,6 г (93,5 0 /₀) IV ($R=R'=R'''=R'''=C_2H_5$); т. разл. $173-75^2$. Найдено 0 /₀: N 29,14. $C_{13}H_{21}N_5$ О. Вычисдено 0 /₀: N 29,28.

Аналогично получают другие соединения IV (табл. 4).

Взаимодействие соединений II с ацетатом калия. а) Смесь 20 г (0,1 моля) II (R=R''=H; $R'=R'''=C_2H_3$), 9,8 г (0,1 моля) ацетата калия и 60 мл диметилформамида нагревают при перемешивании при $155-160^\circ$ в течение 16 часов. Выпавший осадок отфильтровывают, промывают водой и высушивают на воздухе. Выход 14,8 г ($80,0^0/_0$) IV (R=R''=H; $R'=R'''=C_2H_3$) с т. пл. $>340^\circ$. Найдено $0/_0$: N 38,72. $C_7H_{13}N_5O$. Вычислено $0/_0$: N 38,25.

Таблица 4

	Ис	ходное	вещество		2-Окси-4,6-бис-алкил(диалкил)амино- симм-триазин					
R	R'	R"	R'''	х	молеку- лярная формула	BEXOR, 0/0	т. разл., °С	-	Вычис- лено	
н	C ₂ H ₅	н	C ₂ H ₅	OCH ₃	C1H13N5O	96,8	>340	38,00	38,23	
Н	C ₂ H ₅	Н	C ₂ H ₅	OC,H,	C7H13N5O	84,6	>340	38,31	38,23	
Н	C ₂ H ₅	Н	изо-С ₃ Н ₇	OC,H,	C ₈ H ₁₅ N ₅ O	96,0	>340	35,18	35,53	
C ₃ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	OCH ₃	C11H21N5O	97,8	173	29,44	29,28	
Н	C ₂ H ₅	Н	C₃H₅	OCH,CN	C7H13N5O	91,45	>340	38,44	38,23	
Н	C ₂ H ₅	Н	изо-С ₃ Н ₁	OCH,CN	C ₈ H ₁₅ N ₅ O	98,0	>340	35,31	35,53	
CH ₃	CH ₃	CH ₃	CH ₃	OCH,CN	C7H13N3O	79,2	260-63	38,80	38,23	
C ₃ H ₅	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	OCH ₂ CN	C11H21N5O	93,45	173	29,14	29,28	

Таблица 5

	R'	R''	R'''	Молекулярная формула	%	15	Анализ N. º/o	
R					Выхол, о	Т. пл., °C	пайдено	вычис-
Н	C ₂ H ₅	Н	C ₃ H ₅	C ₉ H ₁₅ N ₅ O ₃	95,4	195—201	29,40	29,04
Н	C ₂ H ₅	Н	u30-C₃H₁	C10H17N5O3	86,0	155	27,48	27,45
-CH ₃	CH ₃	CH ₃	CH ₃	C,H15N5O3	9,08	161	29,60	29,64
C ₂ H ₅	C ₁₃ H ₂₃ N ₅ O ₃	84,1	100-102	23,60	23,56			

Аналогично получают IV (R=R"=H; R'=C₂H₃; R"=изо-С₃H₇) с выходом 76,0%; т. пл. >340°. Найдено %: N 35,55. С₈H₁₅N₅O. Вычислено %: N 35,53.

б) Смесь 4,0 г (0,02 моля) II (R=R"=H; R'=R"= C_2H_3), 1,96 г (0,02 моля) ацетата калия и 25 мл ледяной уксусной кислоты при перемешивании нагревают при 130—140° в течение 8 часов. По окончании реакции выпавший осадок отфильтровывают, промывают водой и высушивают на воздухе. Выход 2,2 г (60,2%) IV (R=R"=H; R'= $R'''=C_2H_3$) с. т. пл. >340°. Найдено %: N 38,71. $C_7H_{13}N_5$ O. Вычислено %: N 38,25.

4,6-бис-Этиламино-симм-триазинил - 2-оксиуксусная кислота. Смесь 2,22 г (0,01 моля) I $(R=R''=H;\ R'=R'''=C_2H_5)$ и 0,64 г (0,011 моля) едкого кали в 6,4 мл воды при перемешивании нагревают при $100-110^\circ$ в течение 20 минут. По окончании реакции смесь экстрагируют эфиром, отделяют водный слой и путем подкисления (соляная кислота) рН раствора доводят до 4. Выпавший осадок $V(R=R''=H;\ R'=R'''=C_2H_5)$ отфильтровывают и высушивают на воздухе.

Аналогично получают соединения V (табл. 5).

Պ**ԵՍՏԻ**ՑԻԴՆԵՐԻ ՍԻՆ**Բ**ԵԶ

2–ՑԻԱՆՄԵԹԻԼՕՔՍԻ-4,6–րիս–ԱԼԿԻԼ (ԴԻԱԼԿԻԼ) ԱՄԻՆԱ–սիմ–ՏՐԻԱԶԻՆՆԵՐԸ ԵՎ ՆՐԱՆՇ ՄԻ ՔԱՆԻ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

d. d. Andlubsuv & 4. u. firugsuv

Kuhnhnid

4,6-բիս-Ալկիլ(դիալկիլ)ամինա-սիմ-տրիազինների 2-տրիմեβիլամոնիումային քլորիդների և ցիանմեթիլող խառնուրդի (ֆորմալդեհիդ և ճատրիումի ցիանիդ) փոխազդմամբ ստացվել են 2-ցիանմեթիլօքսի-4,6-բիս-ալկիլ(դիալկիլ)ամինա-սիմ-տրիազինները։

Ուսումնասիրվել են նրանց որոշ փոխարկումները, որոնց հետևանքով սինթեղվել ու բնութագրվել են համապատասխան էթիլային էսթերները,

ամիդները, թթուները և օքսիածանցյալները։

ЛИТЕРАТУРА

- 1. Англ. пат. № 981536, 27.01.65 г., РЖХ, 11 Н, 546 (1966)
- 2. W. L. Scudder, Rep. Fla, agric. Exp. Stn., 206 (1964), W. A. 14 (5) 1331 (1965).
- 3. H. Gysin, E. Knüsli, Advances in Pest. Control Research, 3, 289 (1960).
- 4. Ю. А. Баскаков, И. А. Мельников, Химия в сельском хозяйстве, 1, 46 (1963).
- 5. В. В. Довлатян, Т. О. Чакрян, Изв. AH Apm. CCP, XH, 16, 465 (1963).