XXIV, № 4, 1971

УДК 537.311+546.289+546.815

ИССЛЕДОВАНИЕ ЭЛЕКТРОПРОВОДНОСТИ, ВЯЗКОСТИ И ПЛОТНОСТИ СТЕКОЛ СИСТЕМЫ РЬО—GeO₂

О. К. ГЕОКЧЯН н К. А. КОСТАНЯН

Поступило і VII 1970

Приведены результаты исследования электропроводности, вязкости и плотностистекол системы $PbO-GeO_2$ в зависимости от состава и температуры. Данные солоставлены с данными для стекол бинарных систем $PbO-B_2O_3$, $PbO-SiO_2$ и $PbO-P_2O_5$.

Отмечается влияние координационного изменения германия на свойства стекол системы PbO—GeO₂.

Рис. 5, табл. 1, библ. ссылок 16.

Исследование свойств германатных стекол представляет практический и теоретический интерес.

Имеющиеся в литературе данные относятся к щелочно-германатным и щелочи) алюмо-германатным стеклам [1—5]. Работ, посвященных свинцово-германатным стеклам, сравнительно мало [6—9] и они в основном относятся к свойствам твердых стекол. Эта система интересна для выяснения роли GeO_2 в этих стеклах и сопоставления свойств этой системы со свойствами бинарных систем $\text{PbO}-\text{SiO}_2$, $\text{PbO}-\text{B}_2\text{O}_3$ и $\text{PbO}-\text{P}_2\text{O}_5$.

В настоящей работе приведены данные по исследованию электропроводности, вязкости и плотности стекол системы PbO—GeO₂.

Варка стекол производилась в лабораторной электропечи с силитовыми нагревателями в платиновых тиглях из химически чистых и специально чистых материалов.

В таблице приведены составы сваренных стекол, значения их электропроводностей при 300 и 1200°, вязкостей и плотностей. Измерение электропроводности производилось методом, описанным в работе [10]. Для твердых стекол наши данные по электропроводности и плотности показывают хорошую сходимость с данными Евстропьева и Иванова [8] (кр. 2 рис. 2 и кр. 1 рис. 5).

Вязкость и плотность стекол в расплавленном состоянии были измерены по методу удерживаемого шара [11] в коручдовых тиглях.

Для нескольких стекол были сняты ИКС на автоматическом спектрометре ИК-10 в области частот 1200—1400 см⁻¹. Образцы готовились вакуум-прессовкой стекол в бромистом калии.

Косвенным доказательством ионной природы проводимости стекол системы PbO—GeO₂ может служить тот факт, что на графике $Ex \rightarrow \lg p$ [12] данные стекла находятся в поле ионной проводимости.

РЬО. мол. ⁰/₀	300°	1200°	1100°		20°
			lg η	d, 2/cm ³	d, 2/cm³
5,0	10,6	2,68	_	-	_
10,0	10,9	2,10	_	-	4,29
15,0	11,0	1,54		_	4,63
20,0	10,8	1,30	1,32	4,59	5,00
25,0	10,3	1,00	0,88	4,96	5,43
30,0	10,0	0,79	0,88	5,30	5,69
33,3	9,6	0,75	0,70	5,47	5,91
40,0	9.0	0,68	0,68	5,74	6,25
50,0	8,3	0,50	0,66	_	6,80

Таблица 1 Значения $\lg \rho$, $\lg \eta$ и d для стекол системы PbO—GeO2

На рисунке 1 сопоставлены кривые $\lg \rho = f\left(\frac{1}{T}\right)$ для стекол четырех бинарных систем с одинаковым содержанием PbO в мол. $^0/_0$. Данные для стекол системы PbO—SiO $_2$ и PbO— B_2O_3 взяты из работы [13], для PbO— P_2O_5 получены нами. Из рисунка видно, что зависимость $\lg \rho = f\left(\frac{1}{T}\right)$ имеет вид вытянутой S-образной кривой. Кривые для систем PbO— B_2O_3 отличаются от других тем, что их высокотемпературный участок не строго прямолинейный, а обладает некоторой кривизной. Для расплавленного состояния электропроводность возрастает в следующем порядке:

$$x_{PbO-P_{a}O_{a}} > x_{PbO-B_{a}O_{1}} > x_{PbO-GeO_{a}} > x_{PbO-SiO_{a}} \,.$$

Для твердого состояния этот ряд имеет вид:

$$x_{PbO-PaO_{\delta}} > x_{PbO-SiO_{\delta}} > x_{PbO-GeO_{\delta}} > x_{PbO-BaO_{\delta}}$$

Соотношение $E_{x_{\rm recps.}}/E_{x_{\rm pacns.}}$ при одинаковом содержании PbO в стекле принимает следующие значения: для стекол системы PbO— $B_2O_3\approx 3$, PbO— $GeO_2\approx 2$ и PbO— $SiO_2\approx 1,2-1,5$.

Как видно из рисунка 1, все кривые пересекаются в области высоковязкого состояния.

На рисунке 2 приведены изотерма $\lg \rho$ (кр. 2) и энергии активации электропроводности $E \times$ (кр. 3) в зависимости от содержания окиси свинца для твердого состояния (при 300°), а на рисунке 3 сопоставлены изотермы $\lg \rho$ и энергии активации $E \times$ для бинарных систем с различными стеклообразующими окислами в расплавленном состоянии (при 1000°).

^{*} Второй компонент — GeO₂.

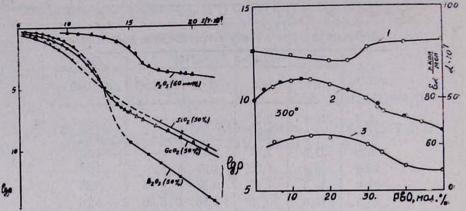


Рис. 1. Зависимость $\lg \rho - \frac{1}{T}$ в широком температурном интервале для некоторых стекол.

Рис. 2. Зависимость коэффициента термического расширения (кр. 1), электропроводности (кр. 2) и энергии активации (кр. 3) от содержания РbO в твердом состоянии.
— данные авторов;
— данные [8].

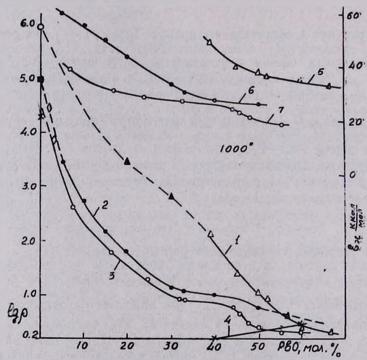


Рис. 3. Зависимость логарифма удельного сопротивдения (кр. I. 2, 3, 4) и энергии активации электропроводности (кр. 5, 6, 7) в расплавленном состоянии от содержания PbO. Значения $Ig\ \rho$: 1- система PbO-SiO $_2$; 2-PbO-GeO $_2$; 3-PbO-B $_2$ O $_3$; 4-PbO-P $_2$ O $_5$. Значения E_{Z} : 5-PbO-SiO $_2$; 6-PbO-GeO $_2$; 7-PbO-B $_2$ O $_3$. $\bigcirc \bullet \triangle -$ данные настоящей работы, $\triangle -$ данные работы [14], $\blacksquare -$ данные работы [15], $\lozenge -$ данные работы [16].

Характер изменения электропроводности от содержания окиси свинна для твердых стекол сильно отличается от такового для расплавленного состояния. В твердых стеклах введение РьО до 20 мол. % приводит к некоторому уменьшению электропроводности, а свыше 20 мол. %. РьО-к увеличению. На изотермах Іду для твердого состояния научастке 34 мол. % РbO наблюдается скачкообразное изменение электропроводности. Такое изменение проводимости было наблюдено также Евстропьевым и Ивановым [8]. Из рисунка 3 видно, что в расплавленных стеклах введение первых же порций РьО во всех стеклах приводит к сильному снижению их сопротивления. Самыми высокими значениями электропроводности обладают свинцово-фосфатные, затем свинцово-боратные, свинцово-германатные и свинцово-силикатные стекла (рис. -3). Опмеченный порядок сохраняется примерно до 50 мол. % PbO, выше этого количества кривые пересекаются и отмеченный порядок изменения электропроводности меняется. Интересно отметить, что кривые: зависимости энергии актичации Ех от содержания РьО имеют симбатный ход с кривыми $\lg y = f(PbO)$ для твердого (рис. 2, кр. 3) и расплавленного состояний (рис. 3, кр. 5, 6, 7).

Интересно отметить также, что при частичной кристаллизации стекол, содержащих 5, 10, 15 мол. % PbO, вблизи температур 920—980° (в зависимости от содержания PbO) наблюдается повышение проводимости, связанное, по-видимому, с выпадением кристаллического GeO₂ и обогащением оставшейся стеклофазы окисью свинца.

Наблюдается резкое изменение вязкости при содержании 30—40 мол. $^{0}/_{0}$ PbO (кр. 2, рис. 4). Минимум на изотерме наблюдается вблизи области составов эвтектической смеси на диаграмме состояния системы PbO—GeO₂ [6]. Из рисунка 4 видно, что значения $\lg \eta$ расплавленных стекол снижаются в ряду $\lg \eta_{\text{PbO}-\text{SiO}_{2}} > \lg \eta_{\text{PbO}-\text{GeO}_{2}} > > \lg \eta_{\text{PbO}-\text{BiO}_{2}}$ и что изокомы вязкости системы PbO—GeO₂ и PbO—В₂O₃ имеют сходный ход, а PbO—SiO₂ резко снижаются в виде прямой [4]. Вблизи составов 40 мол. $^{0}/_{0}$ PbO для стекол системы PbO—GeO₂ наблюдается минимум на изотерме при 1000°. Увеличение количества PbO более 45 мол. $^{0}/_{0}$ приводит к уменьшению вязкости стекол.

Из рисунка 5 и таблицы 2 видно, что для стекол системы PbO— GeO₂ в твердом (кр. 1) и расплавленном (кр. 7) состояниях при увеличении содержания PbO плотность увеличивается. Как в случае электропроводности и вязкости, в области содержания PbO 30—40 мол. %. излом кривых плотностей, наблюдаемый при твердом состоянии, в расплавленном выражен слабее.

Приведенные на рисунке 5 данные по плотности отмеченных систем для твердых и расплавленных стекол подтверждают, что

$$d_{\text{PbO-GeO}_s} > d_{\text{PbO-SiO}_s} > d_{\text{PbO-B}_sO_s}$$
.

На основе эначений плотностей расплавленных стекол системы: $PbO-GeO_2$ нами были рассчитаны мольные объемы стекол и концент--

Армянский химический журнал, XXIV, 4-2

рации кислородных аннонов в этих стеклах в зависимости от содер-

жания РьО при 1000° (кр. 8 рис. 5).

Как видим, при добавке PbO до 35 мол. %, в стеклах системы PbO—GeO₂ наблюдается уменьшение мольного объема. В этой же области составов наблюдается увеличение концентрации кислородных анионов.

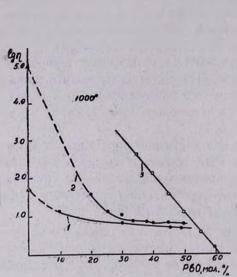


Рис. 4. Зависимость логарифма вязкости от содержания РbO для стекол системы PbO— B_2O_3 (кр. 1), PbO— GeO_2 (кр. 2) и PbO— SiO_2 (кр. 3) в расплавленном состоянии. \bigcirc — данные авторов; \bigcirc — данные [14]; \triangle — данные [16].

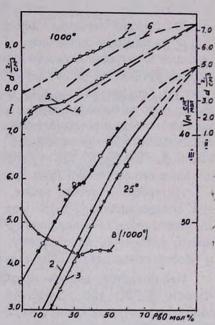


Рис. 5. Зависимость плотности стекол в твердом (кр. 1, 2, 3) и расплавленном (кр. 4, 5, 6, 7) состояниях от содержания РbO. При 20°: 1—PbO—GeO₂; 2—PbO—SiO₂; 3—PbO—B₂O₃: при 1000°; 4—PbO—B₂O₃ [17]; 5—PbO—B₂O₃; 6—PbO—SiO₂ [17]; 7—PbO—GeO₂.

При увеличении содержания PbO до 25 мол. % коэффициенты линейного расширения уменьшаются, а дальнейшее прибавление PbO приводит к их некоторому увеличению (рис. 2, кр. 1). В участке 25—35 мол. % PbO наблюдается их скачкообразное изменение.

Обобщая все данные для системы PbO—GeO₂, можно сказать, что все отмеченные свойства претерпевают своеобразное изменение вблизи состава с содержанием до 35 мол. % PbO.

Отмеченное аномальное поведение этой системы, по-видимому, можно связать с координационным изменением германия типа $GeO_4
ightharpoonup GeO_6$. О возможных координационных изменениях в германатных стеклах свидетельствуют и давные работ [1-4,7].

Снижение электропроводности твердых стекол системы PbO—GeO₂ при добавке PbO объясняется тем, что введение первых порций PbO

приводит к образованию отрицательно заряженных структурных узлов и общему уплотнению германий-кислородной решетки за счет изменения координационного числа германия. Как отмечается в работе [2], только при концентрациях РьО, при которых становится возможным контакт полярных структурных узлов, начинается возрастание электропроводности. Этот участок для исследованных нами стекол соответствует составам, содержащим примерно 20 мол. % РьО (рис 2, кр. 2). При малых содержаниях РьО для механизма проводимости твердых стекол большую роль играет, по-видимому, и фактор подвижности; ионы свинца, находясь в более плотной ушаковке, обладают меньшей подвижностью, что приводит к уменьшению проводимости. Если в твердом состоянии переход GeO₄→GeO₆ введением РbO приводит к общему уплотнению структуры и онижению подвижности ионов свинца, то с переходом в расплавленное состояние такие узлы становятся причиной первичного разрыхления решетки, распадаясь на малоподвижные анионы и катноны свинца. Этим и можно объяснить повышение проводимости исследуемых расплавов с повышением содержания окиси свинца.

Уменьшение мольного объема, увеличение концентрации кислородных анионов и уменьшение коэффициента линейного расширения тоже подтверждает координационное изменение германия в исследованных стеклах. Прямым доказательством этого могут служить данные ИК и ЭПР слектроскопии [7].

Наши данные по ИК спектроскопии стекол системы $PbO-GeO_2$ показали, что ооновная полоса поглощения по мере увеличения содержания PbO перемещается в сторону низких частот на величину порядка $100-120\ cm^{-1}$, что свидетельствует о координационном изменении германия в стекле [5, 7].

Таким образом, полученные в настоящей работе данные показывают, что координационные изменения германия в свинцово-германатных стеклах могут оказать значительное влияние на их физико-химические свойства.

PbO—GeO₂ ՍԻՍՏԵՄԻ ԱՊԱԿԻՆԵՐԻ ԷԼԵԿՏՐԱՀԱՂՈՐԴԱԿԱՆՈՒԹՅԱՆ, ՄԱԾՈՒՑԻԿՈՒԹՅԱՆ ԵՎ ԽՏՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

0. Ղ. ԳՅՈԿՉՑԱՆ և Կ. Ա. ԿՈՍՏԱՆՑԱՆ

Ամփոփում

Ուսումնասիրված են PbO—GeO₃ սիստեմի ապակիների էլեկտրահաղորդականությունը, մածուցիկությունը, խառարկունը և մի քանի այլ ֆիղիկա-քիմիական հատկությունները, կախված ապակու բաղադրությունից և ջերմաստիճանից։

Ստացված տվլալները համեմատված են գրականության մեջ եղած PbO-B₂O₃, PbO-SiO₂ և PbO-P₂O₅ հրկակի սիստեմների ապակիների տվվալներով։

ուվալներով։

Աստակությունների հետ։ Ցուլց է տրված, որ 30—40 ժոլ. ⁰/₀ PbO պարունակող հարագրությունների դեպքում նկատվում է հատկություն — բաղադրություն անուն — կորերի նշված անոմ ալ ապակիներում դոլություն ունեցող գերըն հարարի կոորդինացիոն թելի փոփոխմամել։ Կոորդինացիոն թելի փոփո-անումը հաստատված է նաև ինֆրակարմիր սպեկտրասկոպիկ և մոլալին խունունների ու թթվածնի իռնների կոնցենտրացիալի մասին եղած օժանդակ

ЛИТЕРАТУРА

- 1. M. K. Murthy, B. Scroggle, Phys. Chem. of Classes, 6, 5 (1965).
- 2. А. О. Иванов, К. С. Евстропьев, ДАН СССР, 145 797 (1962).
- 3. E. F. Riebling, J. Chem. Phys., 39, 3022 (1963).
- 4. E. F. Riebling, S. Cabelnicx, J. Electrochem. Soc., 112, 882 (1965).
- 5. M. K. Murthy, E. M. Kirby, J. Phys. Chem. of Glasses, 5, 5 (1964).
- 6. B. Phillips, M. G. Scroger, J. Am. Ceram. Soc., 48, 8 (1965).
- 7. К. С. Евстропьев, Ю. С. Крупкин, Д. Т. Галимов, А. М. Шевяков, И. В. Иконицкий, ДАН СССР. 188, 1104 (1969).
- К. С. Евстропьев, А. О. Иванов, Оптико-механическая промышленнность, № 9, 1 (1959).
- 9. Е. И. Сперанская Изв. АН СССР. ОХН, 1959, 162.
- 10. К. А. Костанян, Докт. дисс., Ереван. 1968.
- 11. Р. С. Сарингюлян, К. А. Костанян, Арм. хим. ж.. 22, 11 (1969).
- 12. И. Н. Зарцалова, Е. А. Файнберг. Л. А. Гречаник, Электрические свойства и строение стекля, Изд. «Химия», Москва—Ленинград, 1964. стр. 30.
- 13. К. А. Костанян, О. К. Геокчян, Арм. хим. ж., 21, 3 (1968).
- 14. А. С. Коновалов, К. С. Евстропьев, ЖФХ, 15, 109, (1944).
- 15. Kurjian, Douglus, J. Chem. Phys., 39, 1889 (1953).
- 16. E. F. Riebiling, J. Am. Ceram. Soc., 49, 19 (1966).
- 17. J. Om. Boskris, G. M. Mellors, J. Phys. Chem., 60, 1321 (1956).