2 M 3 4 U 4 U 6 P Р Г Р Ц 4 U 6 U Г Г И 4 Р Р Р АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXIV, № 4, 1971

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.126+541.127+546.11

ИССЛЕДОВАНИЕ ВЛИЯНИЯ МАЛЫХ ДОБАВОК БЕНЗОЛА НА СКОРОСТЬ ГОРЕНИЯ ВОДОРОДА И ОКИСИ УГЛЕРОДА ПРИ НИЗКИХ ДАВЛЕНИЯХ

КОНСТАНТЫ СКОРОСТИ РЕАКЦИЙ $H+C_6H_6$ И $O+C_6H_6$

Т. Г. МКРЯН, К. Т. ОГАНЕСЯН и А. Б. НАЛБАНДЯН Лаборатория химической физики АН Армянской ССР (Ереван) Поступило 29 V 1970

На статической вакуумной установке в интервале температур $883-963^{\circ}$ К изучено влияние бензола на инжине пределы самовоспламенения смесей $4H_2+O_2$ и $2CO+O_2$. Установлено ингибирующее действие добавок бензола на скорость горения водорода, вследствие чего наблюдалось повышение нижнего предела самовоспламенения смесей $4H_2+O_2$.

В случае горения окиси углерода при малых содержаниях C_6H_6 происходит интенсификация процесса, связанная с реализацией акта разветвления $H+O_2=OH+O$. Ввиду усиления роли реакции $H+C_6H_6$, приводящей к обрыву реакционных цепей, дальнейшее увеличение концентрации бензола (>0.5%) приводит к торможению горения. Найдены следующие значения эффективных констант скорости

$$K_{\rm H+C_0H_o}=(2.05\pm0.90)\cdot 10^{13}~{\rm exp}~(-8700\pm1000/RT)~{\rm cm^3\cdot moab^{-1}\cdot ce\kappa^{-1}}$$
 $K_{\rm O+C_0H_o}=(15.11\pm6.02)\cdot 10^{13}~{\rm exp}~(-5500\pm900/RT)~{\rm cm^3\cdot moab^{-1}\cdot ce\kappa^{-1}}.$
Рис. 2, табл. 1, библ. ссылок 10.

Элементарная реакция атомов водорода с бензолом мало изучена. Имеющиеся литературные данные получены, в основном, при низких температурах. Так, Сауер и Уорд [1] исследовали взаимодействие атомарного водорода с бензолом при 298, 300 и 357°К и давлениях порядка 50 атм. Они показали, что в этих условиях реакция идет с «прилипанием» атомарного водорода и образованием гексадиенильного радикала: Вычисленная ими константа скорости при 298° равна 0,37·108 л·моль — 1 · сек — 1, энергия активации — 3 ккал/моль.

С этими данными согласуются результаты Аллена, Мелвилла, Робба [2] и Янга [3], которые нашли при комнатной температуре следующие величины констант: $1.1 \times 10^6 \, n$ моль $^{-1} \cdot ce\kappa^{-1}$ и $0.1 \times 10^8 \, n$ моль $^{-1} \cdot ce\kappa^{-1}$, соответственно. Шифф и Стеси [4] изучили реакцию атомов H, вытягиваемых из разряда с бензолом при температурах, близких к комнатной. Авторы считают, что в реакции $H + C_eH_e$ происходит отщепление атома H от молекулы углеводорода. Энергия активации этой реакции, по их данным, $<7 \, \kappa \kappa a n / \kappa c n$

При сравнительно высоких температурах и низких давлениях, т. е. в условиях, близких к нашим, сделана работа Панфилова и Воеводского [5], которые для реакции $\mathbf{H} + \mathbf{C_6H_6} \hookrightarrow \mathbf{H_2} + \mathbf{C_6H_5}$ получили констинту скорости, равную

$$K = 7.95 \cdot 10^{13} \exp(-6400/RT) c.w^3 \cdot .woru^{-1} \cdot cek^{-1}$$
.

Относительно взаимодействия атомов кислорода с бензолом имеется несколько публикаций, в частности [6,7], однако количественные параметры этой реакции даются лишь в работе Авраменко, Колесниковой и Савиновой [7], определявших константу скорости реакции $O+C_8H_6$ в температурном интервале 338—523°К. По их данным,

$$K_{\Omega + C, H_a} = 1,75 \cdot 10^{13} e^{-4700/RT} c M^3 \cdot MOAb^{-1} \cdot cek^{-1}$$
.

Для объяснения образующихся продуктов (фенол, формальдегид и др.) авторы предполагают протекание реакции как с разрывом цикла, так и без него. Поэтому полученияя ими константа не может быть прилисана какому-либо определенному акту.

Мы изучили взаимодействие атомов H и O с С₆H₆ методом нижнего предела самовоспламенения смесей водорода с кислородом и CO с О₂ [8—10]. Опыты проводились на статической вакуумной установке в илтервале 883—863°К. Исходя из известного механизма окисления водорода, следовало ожидать ингибирующего влияния добавок бензола вследствие увода водородных атомов по реакции H+C₆H₆. Хотя при таких температурах предпочтителен элементарный акт с отрывом водорода, тем не менее не исключена возможность «прилипания» атома Н. Следовательно, процесс, приводящий к ингибированию горения, можно представить в виде двух одновременно протекающих реакций

$$H + C_eH_e \longrightarrow C_eH_\tau$$

$$(1)$$

В обоих случаях происходит гомогенный обрыв цепей, так как вероятность восстановления активных центров через радикалы C_6H_5 и C_6H_7 мала. Согласно теории, чем больше содержание ингибитора, тем эффективнее происходит торможение процесса горения. Это наглядно подтверждается данными рисунка 1, на котором показаны кривые зависимости нижнего предела самовоспламенения смеси $4H_2+O_2$ от температуры при различных добавках бензола.

Обработкой экспериментальных данных получено следующее значение эффективной константы скорости реакции $H+C_6H_6$:

$$K = (2.05 \pm 0.90) \cdot 10^{13} \exp(-8700 \pm 1000/RT) \text{ cm}^2 \cdot \text{mo.1b}^{-1} \cdot \text{cek}^{-1}$$
.

При горении окиси углерода наблюдалось двоякое действие бензола, что видно из рисунка 2, на котором показана зависимость первых пределов воспламенения смесей $2CO + O_2 + XC_6H_6$ от содержания C_6H_6 .

Из рисунка 2 видно, что при малых добавках ингибитора, вплоть до 0,5%, происходит понижение первого предела. Такое влияние связано с лимитирующей ролью реакции

$$Q + C_e H_e = QH + C_e H_s.$$
 (2)

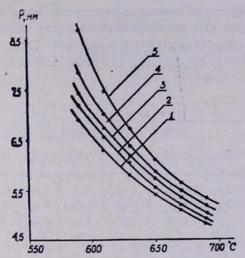


Рис. 1. Зависимость нижнего предела самовоспламенения смесей $4H_2+O_2+XC_6H_6$ от температуры. Значения X (%): 1 — 0,2; 2—0,4; 3—0,56; 4—0,8; 5—1,0.

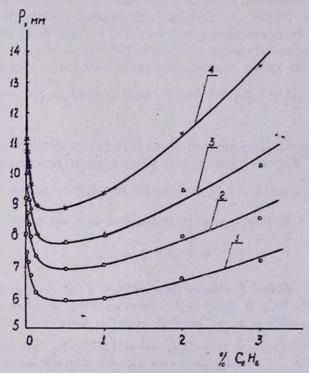


Рис. 2. Зависимость нижнего предела самовоспламенения смесей $2\text{CO} + \text{O}_2 + \text{XC}_6\text{H}_6$ от концентрации бензола при различных температурах: 1 - 963; 2 - 923; 3 - 903; 4 - 883.

При дальнейшем увеличении концентрации бензола начинает возрастать роль реакции (1), по которой происходит гомогенный обрыв ценей и предел самовоспламенения повышается. Такое же действие оказывают предельные углеводороды, как было показано в работах [8—10'.

Таблица

Τ", К	Давление, <i>мм</i> рт. ст. значения X, °/ ₀								
	883	11,16	10,72	10,25	9,67	8,99	8,90	9,41	11,30
903	10,03	9,64	9,22	8,83	8,05	7,80	8,00	9,40	10,30
923	9,19	8,72	8,39	7,97	7,34	6,94	7,05	8,00	8,60
943	8,46	8,05	7,65	7,20	6,70	6,40	6,45	7,15	7,72
963	8,00	7,49	7,17	6,75	6,20	5,89	5,97	6,58	7,20

В таблице представлены результаты различных серий опытов дли смесей $2CO + O_2 + C_6H_6$.

Для нахождения константы скорости использовались данные по пределам тех смесей, в которых содержание бензола не превышало 0,125%. Это ограничение обусловлено тем, что при больших концентрациях C_6H_6 не выполняются уравнения расчета [8—10].

Найденная таким образом константа оказалась равной:

$$K_{\text{O}+\text{C}_{\text{a}}\text{H}_{\text{a}}} = (15,11 \pm 6,02) \cdot 10^{13} \exp(-5500 \pm 900/RT) \text{ cm}^3 \cdot \text{mosb}^{-1} \cdot \text{cek}^{-1}.$$

ԲԵՆԶՈԼԻ ՓՈՔՐ ՀԱՎԵԼՑՈՒԿՆԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՋՐԱԾՆԻ ԵՎ ԱԾԽԱԾՆԻ ՕՔՍԻԴԻ ԱՅՐՄԱՆ ՎՐԱ ՑԱԾՐ ՃՆՇՈՒՄՆԵՐԻ ՏԱԿ

 $H+C_{e}H_{e}$ by $O+C_{e}H_{e}$ abuveburber upuanteeur luususnerberg

Տ. Գ. ՄԿՐՑԱՆ, Կ. Տ. ՀՈՎՀԱՆՆԻՍՑԱՆ և Ա. Բ. ՆԱԼԲԱՆԴՑԱՆ

Udhnhnid

Ուսումնասիրված է բենզոլի գոլորջիների փուքը հավելցուկների ազդեցությունը $4H_2+O_2$ և $2CO+O_2$ խառնուրդների ալրման վրա։ Ցուլց է արված, որ առաջին դեպքում ալրման պրոցեսը դանդաղում է, որը պայմանավորված է $C_0H_1 \stackrel{\text{II}}{\longleftarrow} H+C_0H_0 \stackrel{\text{I}}{\longrightarrow} C_0H_5+H_2$ գումարալին ռևակ-ցիալով, սակալն տվլալ պայմաններում ջրածնի պոկվելն ավելի հավանական է։ Ցուլց է տրված նաև բենզոլի երկակի ազդեցությունը CO-ի ալրման վրա, որը բացատրվում է $O+C_0H_0 \longrightarrow OH+C_0H_5$ և $H+|C_0H_0 \longrightarrow H_2+C_0H_5$ մրցակցող ռեակցիաներով։

 $K_{\text{H+C}_{\text{c}}\text{H}_{\text{c}}} = (2,05 \pm 0,90) \cdot 10^{13} \exp(-8700 \pm 1000/RT) \text{ ud}^3 \cdot 4 n_L^{-1} \cdot 4 p_L^{-1},$ $K_{\text{O+C}_{\text{c}}\text{H}_{\text{c}}} = (15,11 \pm 6,02) \cdot 10^{13} \exp(-5500 \pm 900/RT) \text{ ud}^3 \cdot 4 n_L^{-1} \cdot 4 p_L^{-1}.$

ЛИТЕРАТУРА

- 1. M. C. Sauer, Ir. B. Ward, J. Phys. Chem., 71, 3971 (1967).
- 2. P. E. M. Allen, H. W. Melville, J. C. Robb, Proc. Roy. Soc. (London), A 218, 311 (1953).
- 3. K. Yang, J. Am. Chem. Soc., 84, 3795 (1962).
- 4. H. I. Schiff, E. W. R. Steacle, Can. J. Chem., 21, 1 (1951).
- 5. В. Н. Панфилов, В. В. Воеводский, Кин. и кат., 6, 577 (1965).
- 6. G. Boocock, R. Y. Cvetanovic, Can. J. Chem., 39, 2436 (1961).
- 7. Л. И. Авраменко, Р. В. Колесникова, Г. И. Савинова, Изв. АН СССР, 1, 28 (1965).
- 8. В. В. Азатян, В. В. Воеводский, А. Б. Налбандян, ДАН СССР, 132, 864 (1960).
- 9. В. В. Азатян, Канд. дис. ИХФ АН СССР, Москва, 1963.
- 10. В. В. Азатян, А. Б. Налбандян, Цуй-Мэн-Юань, ДАН СССР, 147, 361 (1962).