

XXIV, № 2, 1971

УДК 542.91+547.57

синтез пестицидов

К ВОПРОСУ СИНТЕЗА ТИОКАРБАМОИЛТИОПРОИЗВОДНЫХ симм-триазина

В. В. ДОВЛАТЯН и Дж. А. МЕЦБУРЯН

Армянский сельскохозяйственный институт (Ереван)

Поступило 22 II 1970

Взаимодействием хлористого цианура с диалкилдитиокарбаматами натрия синтезированы 2,4.6-трис-диалкилтнокарбамоглтчо-симм-триазивы. Получены также 2-хлор-4-влкил (диалкил) амино- или 2-хлор-4-метокси-6-диалкилтнокарбамоилтно-симм-триазины, синтез которых осуществлен взаимодействием 2,4-дихлор-6-алкил (диалкил) аминоили 2,4-дихлор-6-метокси-симм-триазинов с диалкилдитиокарбаматами натрия.

Взаимодействием 2-хлор-4,6-бис-алкил (диалкил) амино-симм-триазинов с алкил-(диалкил) дитею карбаматами натрия синтезированы 2-алкил (диалкил) тиокарбамоилтио-4,6-бис-алкил (диалкил) амино-симм-триазины.

Табл. 3, библ. ссылок 5.

Из числа производных симм-приазина в качестве фунгицидов практическое применение нашел препарат «Дирен», получаемый на основе 2,4-дихлор-О-хлорфениламино-симм-триазина [1].

Ввиду наличия диалкилдитиокарбаминовой группировки в молекулах высокоактивных фунгицидов (цинеба, ТМТД) [2] представлял определенный интерес синтез тиокарбамоилтиопроизводных симм-триазина.

С целью синтеза этих соединений в качестве исходных хлоридов применены три типа хлорпроизводных симм-триазина: хлористый цианур, 2,4-дихлоралкиламино-симм-триазины и 2-хлор-бис-алкиламино-симм-триазины.

Взаимодействие хлористого цианура с алкил- или диалкилдитнокарбаматами натрия впервые изучалось Ортнером и другими [3]. Ими было установлено, что при действин на хлористый цианур солями дитнокарбаминовой кислоты, в зависимости от природы катнона соли и радикала, стоявшего у атома азота, образуются или продукты аномального замещения: 2-диалкиламино-4,6-бис-диалкилтнокарбамоилтно-сими-триазины, или ожидаемые трис-замещенные производные:

X=NR'R" или SCNR'R"

Первое течение реакции авторы объясняют гидролизом дитиокарбамата натрия, который превращается в щелочь, сероуглерод и амин. Под действием этой смеси один атом хлора хлористого цианура замещается на аминогруппу, а остальные два атома реагируют нормально. Если же применяется соль дитиокарбаминовой кислоты, образованная из слабого основания, то преобладает второе течение реакции. Наличие арил-, аралкил- или гидроарилрадикалов также способствует образованию продуктов нормального замещения. Авторы указывают, что в ряде случаев эти два типа соединений образуются одновременно.

В дальнейшем Д' Амико и Герман [4] также описали некоторые диалкилтнокарбамонлтио-симм-триазины, полученные в основном по предложенному Ортнером способу. Вместе с тем показали, что если вместо натриевых солей дитиокарбаминовой кислоты применяются калиевые, то образуются трис-2,4,6-дналкилтнокарбамонлтно-симм-триазины, выходы которых, однако, составляют 31,4—39,5%.

При взаимодействии солей дитнокарбаминовой кислоты с хлористым циануром следовало ожидать также образования моно- и бис-диалкилтиокарбамоилтнопроизводных.

Располагая этими данными и учитывая склонность хлористого цианура реагировать с дитиокарбаматами в различных направлениях, мы предпочли более детально изучить это взаимодействие, что, возможно, привело бы к получению трис-замещенных производных с хорошими выходами.

В результате многочисленных опытов было установлено,, что если процесс ведется в основном при сравнительно низкой температуре (— 10°) и при осторожном, ступенчатом повышении температуры реакционной смеси, а также с применением избытка соли дитиокарбаминовой кислоты, то основные продукты реакции, вопреки дажным литературы, получаются с почти количественными выходами (91—95% теории). Однако, как выяснилось в дальнейшем, в указанных выше условиях 2,4-дихлор-6-алкил (диалкил) амино-симм-приазины с диалкилдитиокарбаматами натрия практически не реагируют. Между тем, при продолжительном нагревании их кмеси в среде ащетона лишь один атом хлора замещается на диалкилтиокарбамоилтиогруппу, что привело к получению 2-хлор-4-алкил (диалкил) амино-6-диалкилтиокарбаматов.

$$CI$$
 N
 N
 N
 R'
 $+ (R)_2NCSSNa \longrightarrow NaCI + (R)_2NCSS$
 N

Специальными опытами было показано, что атом клора, находящийся во втором положении симм-приазинового кольца полученных соединений, к действию диалкилдитиожарбаматов натрия довольно стоек; поэтому в указанных условиях практически исключается образование продуктов полного замещения.

2-Хлор-4,6-бис-алкиламино (диалкиламино) - симм-триазины, в отличие от хлористого цианура и 2,4-дихлор-6-алкиламино (диалкиламино) - симм-триазинов, в среде ацетона с алкил (диалкил) дитиокар баматами натрия практически не реагируют. В связи с этим возникла необходимость более детального изучения влияния среды, температуры, продол-

жительности взаимодействия реагирующих компонентов и их соотношения на окорость реакции, а также на выход целевых продуктов. В результате многочисленных опытов было установлено, что алкил (диалкил) дитиокарбаматы натрия с 2-хлор-4,6-бис-алкиламино (диалкиламино)-симм-триазинами реагируют только в среде диметилформамида; оптимальной температурой и продолжительностью реакции, обеспечивающей наиболее высокий выход продуктов реакции, являются 120° и 4—5 часов, соответственно.

$$\begin{array}{c} CI \\ N \\ N \\ R_1RN - NRR_1 \end{array} + (R)_2NCSSNa \longrightarrow NaCI + \begin{array}{c} SCSNRR \\ N \\ N \\ N \\ NRR_1 \end{array}$$

Результаты испытаний фунгицидной и гербицидной активности перечисленных соединений будут опубликованы отдельно.

Экспериментальная часть

2,4,6-трис-Диметилтиокарбамоилтио-симм-триазин. К $62\ s$ $(0,33\ \text{моля})$ диметилдитиокарбамата наприя с т. пл. 115° в $200\ \text{мл}$ ацетона при— 10° и энергичном перемешивании тю каплям прибавляют раствор $18,4\ s$ $(0,1\ \text{моля})$ хлористого цианура $(\tau,\eta,146-47^\circ)$ в $100\ \text{мл}$ ацетона. Смесь перемешивают в течение часа, затем при комнатной температуре еще час. По истечении указанного времени, смесь кипятят на водяной бане в течение $1\ \text{часа}$, затем охлаждают ледяной водой, выпавший осадок отсасывают, промывают водой и высушивают на воздухе. Выход $40-42\ s$ (91,3-95%), т. пл. 474° . Найдено %: N 49,07; S 43,45. $C_{12}H_{18}N_6S_6$. Вычислено 0 0: N 19,17; S 43,83.

Аналогичным образом получен 2,4,6-трис-диэтилтиокарбамоилтиосимм-триазин с выходом 90%; т. пл. 135—36°; по литературным данным, 136—37° [4].

2-Хлор-4-алкил (диалкил) амино- или 2-хлор-4-метокси-6-диалкилтио-карбамоилтио-симм-триазины. К смеси 0,2 моля 2,6-дихлор-4-алкил (диалкил) амино- или алкокси-симм-приазина с 50 мл безводного ацетона прибавляют 0,2 моля диалкилдитиокарбамата натрия. Смесь при постоянном перемешивании нагревают на водяной бане в течение 6 часов. Затем охлаждают, отфильтровывают от выпавшего хлористого натрия и после удаления из фильтрата ацетона остаток растворяют в эфире. Эфирный экспракт промывают водой и высушивают над сернокислым натрием. Выходы, данные анализа и т. пл. полученных соединений приведены в таблице (1.

2-Алкил (диалкил) тиокарбамоилтио-4,6-бис-алкил (диалкил) аминосимм-триазины. Смесь 0,01 моля 2-хлор-4,6-бис-алкил (диалкил) аминосимм-триазина и 0,012 моля алкил (диалкил) дитиокарбамата натряя, растворенного в 10 мл диметилформамида, при температуре масляной бани 120° перемешивают 5 часов. По окончании реакции смесь охлаждают, добавляют 30 мл воды и отсасывают.

Таблица 1

	R'	Выход, °/о	Т. пл., С	Молекулярная формула	Анализ, 0/0			
					S		N N	
R					найдено	вычис-	найдено	вычис-
CH ₃	NHCH ₃	79,8	165—167 (с разл.)	C ₇ H ₁₀ CIN ₅ S ₂	24,66	24,28	26,88	26,56
	N(CH ₃) ₂	75,8	162—163	C ₈ H ₁₂ CIN ₅ S ₂	24,46	23,06	25,55 25,66	25,22 25,22
	NHC ₂ H ₅	83,9	128—129	CaH12CIN5S2	23,44	23,06	23,26	22,91
	N(C ₂ H ₅) ₂ *	73,3	_	C10H16CIN5S2	21,12	20,75	21,53	21,17
	OCH ₃	60,6	134—136	C,H,CIN,OS,	24,58	24,19	24,12	24.01
C ₂ H ₅	NHCH,	82,7	120—121	C.H.4CIN5S2	22,32	21.95	23,05	22,91
	N(CH ₃) ₂	83,3	86-88	C10H16CIN5S2	21,15	20,75	23,20	22,91
	NHC ₂ H ₅	82,5	96 98	C10H16CIN5S2	21,13	20,75	21,38	20,98
	N(C ₂ H ₅) ₂ **	81,6	_	C12H20CIN5S2	19,57	19,19	19,40	19,14
	OCH ₃ ***	73,3	7578	C.H13CIN4OS	22,29	21,88	13,40	15,14

*
$$n_D^{20} = 1.5408$$
, $d_A^{20} = 1.1243$
** $n_D^{20} = 1.5530$, $d_A^{20} = 1.1445$
*** T. $\pi\pi$. $78-79^{\circ}$ [5].

жидкости, разлагающиеся при перегонке в вакууме.

Выходы, данные анализа и т. пл. полученных соединений приведены в таблицах 2 и 3.

Таблица 2

R	R'	R"	Выход, 0/0	Т. пл., °С		A	Анализ, ⁰ / ₀		
					Молекулярная формуля	S		N	
						ОНЗ	ن	SHO.	ن
						пайдено	вычис-	найдено	вычнс-
			m		100	22	# K	H	8 5
Н	C ₂ H ₅	C ₂ H ₅	66,8	138—139	C12H22N6S2	20,74	20,38	27,08	26,75
Н	CH ₃	C ₂ H ₅	66,4	190—191	C10H18N6S2	22,06	22,37	29,60	29,37
CH ₃	CH3	C ₂ H ₅	68,4	120—121	C12H22N.S.	20,71	20,38	27,05	26,75
Н	C ₂ H ₅	CH ₃	62,9	266-268	C ₁₀ H ₁₈ N ₆ S ₂	22,78	22,37	29,72	29,37
Н	CH ₃	CH ₃	63,1	не пл.	C ₈ H ₁₄ N ₆ S ₂	25,20	24,85	32,82	32,62
	- 37	-		23.0				71-	

Армянский химический журнал, XXIV, 2-6

Таблица 3

		0,0	1		Анализ, 0/0			
					S		N	
R	R ₁	BMXOL.	Т. разл., °C	Молекулярная формула	онсхив	пычис-	найдено	вычис-
		Bh	28/21 /		Hail	ne un	Haif	BENTH
C ₂ H ₅	СН3	73,5	261—262	C,H,6N,S2	23,89	23,52	31,21	30,88
C ₂ H ₅	C ₂ H ₅	73,4	268—269	C10H18N8S2	22,77	22,37	29,74	29,37
C ₂ H ₅	\bigcirc	92,8	256—258	C ₁₄ H ₁₈ N ₆ S ₂	19,55	19,16	25,52	25,14
изо-C ₃ H ₇	CH ₃	75,1	254—255	C10H18N6S2	22,00	22,37	29,50	29,37
изо-С ₃ Н ₇	C ₃ H ₅	73,3	161—163	C11H20N8S2	21,73	21,33	28,22	28,00
изо-С ₃ Н ₁		91,9	245—248	C ₁₅ H ₂₀ N ₆ S ₂	18,77	18,39	24,42	24,13

ՊԵՍՏԻՑԻԴՆԵՐԻ ՍԻՆԹԵՉ

սիմ-ՏՐԻԱԶԻՆԻ ԹԻՈԿԱՐԲԱՈՄՈՒԼԹԻՈԱԾԱՆՑՑԱԼՆԵՐԻ ՍԻՆԹԵԶՄԱՆ ՀԱՐՑԻ ՇՈՒՐՋԸ

4. 4. Anglupsuv & 2. 2. Ubdenfesuv

Udhnhnid

Ցիանուրի քլորիդի և նատրիումի դիալկիլդիթիոկարբամատների փոխազդմամբ սինթեզված և բնութագրված են 2,4,6-աrիս-դիալկիլթիոկարբամոիլթիո-սիմ-տրիազիններ։

2,6-Դիքլոր-4-ալկիլ(երկալկիլ)աժինա- կամ ալկօքսի-ռիմ-տրիազինների և նատրիումի դիալկիլդիթիոկարբաժատների փոխազդմամբ ստացված են նաև 2-քլոր-4-ալկիլ(երկալկիլ)աժինա- կամ ալկօքսի-6-դիալկիլթիոկարբաժիլթիո-ռիմ-տրիագիններ։

2-Քլոր-4,6-բիս-ալկիլ(երկալկիլ)ամինա-սիմ-տրիազինների և նատրիումի ալկիլ(երկալկիլ)դիթիոկարբամատների փոխազդմամբ սինթեզված են 2-ալկիլ(երկալկիլ)թիոկարբամոիլթիո-4,6-բիս - ալկիլ(երկալկիլ)ամինա-սիմտրիազիններ։

ЛИТЕРАТУРА

- 1. Пат. США. 2720480 (1956). [C. A. 13101 (1956)].
- 2. Н. Г. Берим, Химия защиты растений. Госизсельхозлит, Ленинград, 1966.
- 3. А. Карумидзе, Основы хим. защиты растений, Госизсельхозлит, Москва, 1960, стр. 154
- 4. L. Orthner, Leverkyssen, J. Cs. Werk. M. Bogeman, Пат. США, 2061520 (1936): [С. А. 32, 706 (1937)].
- 5. J. J. D'Amico, M. W. Harman, J. Am. Chem. Soc., 78, 5345 (1956).
- ·6. Брит. пат. 908352 (1962); ГС. A. 59, 11535 (1963)].