2ЦЗЧЦЧЦЪ ₽ԻՄРЦЧЦЪ ЦГИЦԳРГ АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXIV, Nº 11, 1971

химическая технология

1. 11 12 1A 10-12

УДК 546 41+546.46+620.193.42

КАУСТИФИКАЦИЯ ЩЕЛОЧНО-КРЕМНЕЗЕМИСТЫХ РАСТВОРОВ

VIII. ИЗУЧЕНИЕ ГИДРОСИЛИКАТОВ МАГНИЯ И КАЛЬЦИИ-МАГНИЯ МЕТОДАМИ ФИЗИКО-ХИМИЧЕСКОГО АНАЛИЗА

Г. О. ГРИГОРЯН, Г. Г. МАРТИРОСЯН и О. В. ГРИГОРЯН

Институт общей и неорганической химии АН Армянской ССР (Ереван)

Поступило 27 І 1970

Изучены гидросиликаты магния и кальций-магния (MeO:SiO₂=1), полученным при каустификации щелочно-кремисземистых растворов обожженными магнезитом и доломитом

Доказано, что синтезированные гидросиликаты—химические соединения: кальций магиневый гидрометасиликат [предполагается юрупант— (Ca,Mg)₆Si₆O₁₇(OH)₂] и гидро метасиликат магиня, идентичный керолиту (MgO-SiO₂-H₂O).

Установлено, что полученные гидрометасиликаты содержат адсорбированиую у конституционную воду.

Рис. 4, табл. 2, библ. ссылок 12.

Ранее [1,2] нами были установлены условия получения гидросиликатов матния (MgO:SiO₂=1), и кальций-магния (CaO+MgO/SiO₂=1) при каустификации щелочно-кремнеземистых растворов обожженными матнезитом и доломитом. В данной работе сделана попытка изучения фазового состава осадков, полученных при указанном процессе. Для изучения промытых и высушенных осадков был применен комплексный фазовый анализ.

Гидрометасиликат магния. Данные рентгенофазового анализа, приведенные в табл. 1, показывают, что гидрометасиликат мапния, полученный при каустификации (образец А), идентичен с минералом керолитом (MgO·SiO₂·H₂O) [3] и с гидросиликатом магния (MgO:SiO₂= 0,611), синтезированным взаимодействием хлористого магния с тетраэтоксисиланом в среде спирта [4]. Полученный нами гидрометасиликат магния в основном имеет игольчатое строение [2], с показателем преломления 1,486, т. е. идентичен с β-керолитом [5].

Дифференциально-термический анализ гидрометасиликата малния (рис. 1) выявил четыре эндотермических эффекта дри 100—300, 400— 500, 500—680, 740—780° и один сильный экзотермический эффект с острым максимумом при 800°. Эндотермические эффекты соответствуют зыделению 1,07 мол. воды, содержащейся в молекуле гидрометасиликата магния (CO₂ в осадке почти отсутствует), а экзотермический эффект соответствует превращению гидрометасиликата магния в энстатит (Mg₂[Si₂O₆]) [6] (табл. 1). Кривая термовесового анализа показывает, что при нагревании гидрометасиликата магния вода выделяется непрерывно до 800°. Количество воды, выделенной из каждой молекулы гидрометасиликата в интервалах температур 100—300, 330—710 и 710— 800°, соответственно, составляет: 0,34, 0,58 и 0,1 моля.

Рис. 1. Кривые ДТА и термонесового анализа гидрометасиликатов: 1 — магния; 2 — кальция; 3 — кальций — магния.

Сопоставление данных дифференциально-термических анализов гидрометасиликатов магния, полученных путем каустификации и взаимодействием растворов хлористого магния с метасиликатом натрия, показало, что они отличаются только эндотермическим эффектом при 400— 500°, который, по-видимому, соответствует дегидратации свободной гидроокиси магния.

Высушивая образец до постоянного веса при температурах, примерно соответствующих эндотермическим эффектам, выяснилось, что после сушки при 200° в каждом моле гидрометасиликата остается 0,66 мол. воды, при 460°—0,3 мол. и при 800°—0. Эти данные, а также результаты дифференциально-термического анализа показывают, что

Таблица I

Ренггенограмма	образца А	$(MgO:SIO_2=)$
----------------	-----------	----------------

10 прока:	нвания	После прокаливания при 900				
din J		d/n	J	d/n	J	
4,450	511.	4,284	3	1,932	1	
3,230	2m:	3,858	3	1,774	3	
2,590	8m.	3,463	1	1,728	5	
2,360	2	3,126	8	1,605	8	
2,100	1	2,825	10	1,519	2	
1,690	1	2,733	1	1,472	6ш.	
1,530	10	2,473	9ш.	1,391	2	
1,310	4	2,260	2			
1,007	2	2,106	2ш.			
0,890	1	1,993	1			

связь воды в гидрометасиликате мапния имеет различный характер.

Для выяснения характера связи воды были изучены образцы, высушенные дри различных температурах (Шо, 330, 700, 800°) методом ИК электроскопии. Данные, приведенные на рисунке 2, показывают, что полоса поглощения 1600 с m^{-1} , характерная для адсорбционной межслоевой воды [7], исчезает лосле сушки гидрометасиликата матния пр в 330°, а полоса поглощения 3450—3640 с m^{-1} , характерная для группы ОН, усиливается после сушки при 330° и становится незначительной при температуре выше 800°. Отсутствует полоса поглощения 3730с m^{-1} , харажтерная для гидроожиси магния [8]. Из этого следует, что гидрометасиликат магния содержит как адсорбированную воду, находящуюся между слоями, так и конституционную, с природой связи, характери ли для тоберморита и ксанотлита [7].

Рис. 2. 11К спектры калыций-магниевого гидромстасиликата, высушенного при температурах: 1—110; 2 — 330; 3 — 700; 4—800°.

Рис. 3. ИК спектры кальциймагиневого гидрометасиликата, высушенного при температурах: 1 — 100; 2 — 350; 3 — 680; 4 — 800°.

Кальций-магниевый гидрометасиликат. Продукт, полученный при взаимодействии щелочно-кремнеземистого раствора с обожженным доломитом и по химическому составу соответствующий кальций-магниевому гидрометасиликату (образец Б), рентгенографически (табл. 2) не идентичен с тремолитом (Ca₂Mgs[OH]₂[Si₈O₂₂]) [6], гидрометасиликатом кальция [9] и магния (табл. 1) и их стехиометрической смесью (табл. 2). Образец полученного осадка, прокаленный при 900° (табл. 2), рентгенографически идентичен диошсиду [3]. Предполагается, что полученный калыший-магниевый гидрометасиликат представляет собой юрупант

1018

(Ca,Mg)₆Si₆O₁₇(OH)₂ [10], однако идентифицировать их было невозможпо из-за отсутствия эталонных данных.

До прокаливания			После прокаливания при 900°						
образец В смесь		образи	образец Б		смесь				
din	J	din	J	d/n	J	d n	J	d n	J
3,620	1	2,592	3	3,278	3	3,787	2	1,591	1ш.
3,304	3	2,391	10 .	2,962	10	3,420	1	1,469	1
3,014	10	2,170	1	2,491	9	3,213	2	1,455	3
2,770	2	2,074	2	2,266	1	2,932	10	1,371	1
2,083	2	1,440	2	2,178	1	2,724	3	1,325	2
1,820	4	1,332	2	2,096	1.	2,465	7	1,294	1
1,660	2	1,215	8	2,022	2	2,411	3		
1,529	4	1,038	1	1,830	1	2,301	1		
1,480	1	1.0		1,743	3	2,227	1	-	
1,400	1			1,609	8	2,142	1	1	-
1,307	1		-	1,494	2	1,991	1	-	10
1,110	1	100		1,412	5	1,893	1	24 1	
0,938	1	5 14		1,316	3	1,800	2	2	
	17.00	-2.	1 -	1,269	3	1,722	9		
		1 NR		1,237	1	1,642	1		

Рептгенограммы образца Б и смесн гидрометасиликатов кальция и магния

Дифференциально-термические и термовесовые кривые калыциймагниевого гидрометасиликата (рис. 1) показывают, что потери веса продолжаются непрерывно до 1000°. Вода, содержащаяся в молекуле кальций-магниевого гидрометасиликата (2 мол.), выделяется при различных температурах (100—350; 350—700; 700—800°), а потеря веса при 800—1000° падает на долю СО₂, выделившегося из СаСО₃.

Исходя из идентичности термических кривых гидрометасиликатов матния, кальция и кальций-магния (рис. 1), а также и результатов исследования адсорбционных свойств гидрометасиликата кальция по методу БЭТ [11], можно предположить, что I и II эндотермические эффекты (100—350 и 350—700°) соответствуют выделению воды, адсорбированной соответственно в порах и между слоями, а вода выделившаяся при 700—800°, является конституционной.

В подтверждение сказанного осадок был высушен до постоянного веса при температурах, соответствующих эндотермическим эффектам. Полученные образцы исследовались химическим и ИК спектроскопическим методами. Данные химического анализа показывают, что после сушки при 100, 350, 680° количество воды в 1 молекуле гидросиликата снизилось до 2,1; 1,0; 0,45 мол., а в образце, высушенном при 800°, вода

Таблица 2

отсутствует, т. е характер связи воды в гидрометасиликате различен. Данные ИКС, приведенные на рисунке 3, показывают, что полоса поглощения 1600 см⁻¹ исчезает после сушки при 350°, а полоса поглощения 3450 см⁻¹, при 800°. Таким образом, кальций-магниевый гидрометасиликат, полученный при каустификации, содержит как адсорбированную воду, находящуюся между слоями, так и конституционную с природой связи воды, характерной для тоберморита.

Исходя из идентичности гидрометасиликатов матния и кальциймагния с тоберморитом по характеру связи воды и ее выделению при нагревании, предполагаетоя, что упомянутые гидрометасиликаты, подобно тобермориту [12], состоят из слоев кремнекислородных лент, между которыми находятся ионы магния или кальция и магния и часть воды.

Рис. 4. Электронно-микроскопический снимок кальциймагниевого гидрометасиликата × 17000.

Кальций-магниевый гидрометасиликат, подобно гидрометасиликату кальция, состоит из хлопьевидных агрегатов [2], однако отличается от него показателями преломления $N_{cp} = 1,510$, против 1,534 - 1,537.

Кальций-магниевый гидрометасиликат с мольным соотношением CaO + MgO -

СаО + мgO = 1,1 был исследован на электронном микроскопе ЭМ-5 SiO₂

методом суспензии при электрооптическом увеличении 4400 х. Образец состоит как из прозрачных, так и непрозрачных бесформенных зерен величнной в среднем около 1 р. (рис. 4). Наименьшие частицы имеют размеры примерно 0,1 р.

1020

ՀԻՄՔԱՍԻԼԻԿԱՏԱՑԻՆ ԼՈՒԾՈՒՅԹՆԵՐԻ ԿԱՈՒՍՏԻՖԻԿԱՑՈՒՄ

VIII. ՄԱԳՆԵԶԻՈՒՄԻ ԵՎ ԿԱԼՑԻՈՒՄ–ՄԱԳՆԵԶԻՈՒՄԻ ՀԻԴՐՈՍԻԼԻԿԱՏՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ ՖԻԶԻԿԱ–ՔԻՄԻԱԿԱՆ ԱՆԱԼԻԶԻ ՄԵԹՈԴՆԵՐՈՎ

Գ. Հ. ԳՐԻԳՈՐՅԱՆ, Գ. Գ. ՄԱՐՏԻՐՈՍՅԱՆ 🛓 Օ. Վ. ԳՐԻԳՈՐՅԱՆ

Ամփոփում

Ռենտդենապրաֆիական, դիֆերհնցիալ, Թերմիկ, բյուրեղաօպտիկական և ինֆրակարմիր սպեկտրակոպիական կոմպլեքսային ֆազային անալիղով ուսումնասիրվել են հիմքասիլիկատային լուծույթների կաուստիֆիկացմամբ ստացված մագնեղիումի և կալցիում-մագնեղիումի հիդրոսիլիկատները։

Պարսլվել է, որ ստացված հիդրոսիլիկատները քիմիական միացություններ են՝ կալցիում-մագնեղիումային հիդրոմեթասիլիկատ (ենթադրվում է յուրուպաիտ (Ca, Mg)₈Si₈O₁₁(OH)₂] և մադնեղիումի հիդրոմեթասիլիկատ, որը նույնական է կերոլիտի (MgO·SiO₂·H₂O) հետո

Հաստատվել է, որ սինթեղված հիդրոմեթասիլիկատները տորերմորիտի հման պարունակում են ինչպես ադսորբված (միջշերտային), նույնպես և բիմիապես միացած ջուր։

ЛИТЕРАТУРА

- 1. Г. Г. Мартиросян, Г. О. Григорян, М. Г. Манвелян. ЖПХ, 39, 266 (1966); Г. Г. Мартиросян, Г. О. Григорян, ЖПХ, 40, 36 (1967); Г. Г. Мартиросян, М. Г. Манвелян, Г. О. Григорян, О. В. Григорян, Арм. хим. ж., 20, 849 (1967).
- 2 Г. Г. Мартиросян, Г. О. Григорян. Арм хим. ж., 20, 753 (1967).
- 3. A. S. T. M (X-ray difraction data Cards. Am. Soc. Testing Materials), 1959.
- 4. J. Wiegmann, C. H. Horte, Silicatechnik, 11, 380 (1960).
- 5. S. Henin, O. Robichet, Clay Minerals Bulletin, 2, 110 (1954).
- В. И. Михеев. Рентгеномстрический определитель минералов. Госгеолтехиздат; Москва, 1957 г., стр. 488.
- 7. C. L. Kalousek, R. Roy, J. Am. Ceram. Soc., 40, 236 (1957).
- 8. З. А. Констант, А. Я. Вайвод. Изв. АН Латв. ССР, сер. хим., № 1,5 (1965).
- 9. Г. І. Мартиросян, Г. О. Григорян. Арм. хим. ж., 20, 454 (1967).
- Ю. М. Бутт, Л. Н. Рашкович. Твердение вяжущих при повышенных температурах. Стройиздат, Москва, 1965 г.
- 11. Т. В. Крмоян, Г. И. Микаелян. Изв. АН Арм. ССР, ХН, 11, 307 (1958).
- 12. H. D. Megaw, C. H. Kelsey, Nature, 117, 390 (1958).