XXIV, № 11, 1971

УДК 542.91+547.857

производные пиримидина

ХХУ. СИНТЕЗ 2-(4'-АЛКОКСИБЕНЗИЛ)-6-ХЛОР-8-МЕТИЛ- 11 6-ОКСИПУРИНОВ

А. А. АРОЯН и Р. Г. МЕЛИК-ОГАНДЖАНЯН

Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 30 XII 1970

Синтеэнрованы некоторые пиримядины и ряд 6-хлор-8-метил- и 6-оксипуринов содержащих во втором положении 4-алкоксибензильные радикалы. Табл. 3, библ. ссылок 4

Среди различных антиметаболитов, с успехом применяющихся в медицинской практике, определенное место занимают и антагонисты пурина. В качестве потенциальных антиметаболитов нуклеинового обмена нами синтезированы производные пурина I и II, содержащие в положении 2 *п*-алкоксибензильные радикалы.

Интерес к этим соединениям был вызван и тем, что некоторые из синтезированных нами производных пиримидина, содержащие 4-алкох-сибензильные радикалы, обладают значительной противоопухолевой активностью [1].

Исходными веществами для синтеза пуринов I и II являются пиримидины III, синтезированные по следующей схеме.

RO
$$CH_{2}C \stackrel{\text{NH}}{\underset{\text{NH}_{2}}{\bigvee}} \cdot \text{HCI} + CHNHCOCH}_{3} \xrightarrow{CH_{3}ON_{3}}$$

$$C \equiv N$$

$$OH$$

$$NHCOCH_{3}$$

$$NH_{2}$$

$$NH_{2}$$

$$R = CH_{3}, \cdots C_{4}H_{9}$$

В первоначальных опытах конденсацию гидрохлоридов амидинов 4-алкоксифенилуксусных кислот [2] с этиловым эфиром ацетиламиноциануксусной кислоты [3] проводили в среде абсолютного этанола с использованием этилата натрия. Однако замыкания пиримидинового ядря не происходило. Увеличение количества этилата натрия и продолжительности реажции не привело к удовлетворительным результатам.

Аналогичная конденсация на примере ацетамидина и этилового эфира ацетиламиноциануксусной кислоты была впервые проведена з среде абсолютного этанола в присутствии метилата натрия [4]. В наших опытах хорошие результаты были лолучены также при использовании метилата натрия. Полученные 2-(4'-алкоксибензил)-4-амино-5-ацетиламино-6-оксиниримидины (III) представляют собой белые кристаллические вещества, не растворимые в эфире, бензоле, ацетоне. Чистота и индивидуальность соединений III установлена тонкослойной хроматопрафией на микропластинке (SiO₂, G, ацетон—вода, 49:1, проявление парами йода).

В литературе [4] описана циклизация 2-метил-4-амино-5-ацетилимино-6-оксипиримидина в 2,8-диметил-6-оксипурин; реажцию проводят 16-часовым нагреванием при 55° в присутствии хлорокиси фосфора. В аналогичных условиях нам не удалось осуществить синтез 2-(4'-алкоксибензил)-6-окси-8-метилиринов. Однако при напревании пиримидинов III с хлорокисью фосфора в присутствии диэтиланилина и притемпературе 120—130° происходит замыкание пуринового цикла с одновременным замещением гидроксильной группы на хлор.

$$III \xrightarrow{POCI_1, C_nH_5N(C_9H_5)_2} \left[RO \underbrace{OH}_{CH_2}^{OH} \underbrace{N}_{N} \underbrace{H}_{CH_3}^{N} \right] \longrightarrow 1$$

Все хлорпурины I—светло-желтые кристаллические вещества, растворимые в эфире, бензоле, ацетоне. Хроматографированием на микропластинке SiO₂, G в системе ацетон—гептан выявлено только одно лятно (табл. 2).

Нагреванием 2-(4'-алкоксибензил)-4-амино-5-ащетамино-6-оксипиримидинов (III) с формамидом при 170—180° в течение часа синтезированы 2-(4'-алкоксибензил)-6-оксипурины (II).

Так как 6-оксипурины (II) практически не растворимы в полярных и нополярных растворителях, нам не удалось их перекристаллизовать. Поэтому для очистки они были переведены в жалиевые соли, а затем осаждены укоусной кислотой (табл. 3).

Экспериментальная часть*

2-(4'-Алкоксибензил) 4-амино-5-ацетамино-6-оксипиримидины (III). Смесь 0,1 моля гидрохлорида 4-алкоксифенилацетамидина, 17 г (0,1 мо-

В выполнении экспериментальной части участвовал студент Г. Г. Налбандян.

ля) этилового эфира ацетиламиноциануксусной кислоты и метилата натрия, приготовленного из 6,9 г (0,3 г-ат) натрия и 100 мл абсолютного метанола, при перемешивании нагревают на водяной бане в теченне 6—8 часов, отгоняют 2/3 спирта, добавляют 100 мл воды и подкисляют уксусной кислотой до рН 5. После охлаждения фильтруют, кристаллы промывают водой, перекристаллизовывают из 50%-ной уксусной кислоты и сушат при 100° (табл. 1).

Таблици Ј

A STATE OF	7 1 31	0/0	Rf	A Della City	Анализ. 0/0					
R	Т. пл., С			VI	С		Н		N	
				Молекулярная формула	OIII	ن -	0113	7	9	4
		Выход,			найдено	вычис-	напдено	Вычнс	пайдено	BENTILO
		8			H.	H 51.	=	18 PF	==	nen ven
CH ₃	320 - 321	60,8	0,36	C14H16N4O3	58,40	58,36	5,74	5,58	18,97	19,43
C ₂ H ₅	327—328	62,5	0,37	C ₁₅ H ₁₈ N ₄ O ₃	59,77	59,59	6,07	5,99	18,60	18,53
C ₃ H ₇	316—317	59,2	0,35	C16H20N4O3	60,44	60,74	6,52	6,34	17,58	17,71
1130-C3H1	301-305	63,2	0,28	C16H20N4O3	60,14	60,74	6,96	6.34	18,13	17,71
C ₄ H ₉	310-311	68,1	0,40	C17H22N4O3	61,30	61,50	6,70	6,70	17,27	16,95
изо-С ₄ Н ₉	311-312	64,5	0,39	C17H22N4O3	61,37	61,50	6,38	6,70	16,99	16,95
										1

- 2-(4'-Алкоксибензил)-6-хлор-8-метилпурины (1). Смесь 0,01 молж 2-(4'-алкоксибензил) 4-амино-5-ацетамино-6-оксипиримидина, 25 мл свежеперегнанной хлорокиси фосфора и 10 мл диэтиланилина кипятят при 120—130° в течение 3 часов. Отгоняют избыток хлорокиси фосфора и к оставшейся массе добавляют ледяную воду. Выпавшие кристаллы отсасывают, промывают водой и перекристаллизовывают из 50%-ного метанола (табл. 2).
- 2-(4'-Алкоксибензил)-6-оксипурины (II). Смесь 0,01 моля 2-(4'-алкоксибензил)-4-амино-5-ацетамино-6-оксипиримидина и 30 мл свежелерегнанного формамида кипятят при 170—180° в течение часа. После охлаждения отфильтровывают выпавший осадож, промывают 50 мл метанола и суштат (табл. 3).

R		Выход, 0/0	R _f	Молекулярная формула	Анализ, 0/0							
	·n				С		Н		N		CI	
	Т. нл., °С				пайдено	вычис-	найдено	яычис- лено	найдено	лено	найдено	лепо
CH ₃	209-210	46,8	0,31	C14H13CIN4O	58,12	58,23	5,06	4,53	19,07	19,40	12,39	12,27
C ₂ H ₅	178—179	49.5	0,27	C ₁₅ H ₁₅ CIN ₄ O	60,05	59,83	5,09	4,99	18,65	18,50	11,76	11,70
· C ₃ H ₇	184-185	75,9	0,34	C ₁₆ H ₁₇ CIN ₄ O	60,38	60,66	5.25	5,40	18,04	17,68	11,03	11,19
uso-Catt,	200201	78,7	0,37	C16H17CIN4O	61,03	60,66	5,24	5,40	17,48	17,68	11,27	11,19
C ₄ H ₉	175—176	66,6	0,40	C17H10CIN4O	61,59	61,72	6,01	5,78	16,70	16,93	10,57	10,74
изо-С,Н,	198199	63,2	0,37	C ₁₇ H ₁₉ CIN ₄ O	62,07	61,72	5,55	5,78	16,78	16,93	10,82	10,74

Таблица 3

	Т. пл., °С	Выход, 0/0	Молекулярная формула	Анализ, 0/0						
R						ŀ	1	N		
				найдено	BLATIIC-	пайдено	вычис-	нандено	BLATIC-	
CH ₃	252-253	82,0	C131112N4O2	61,07	60,92	4,57	4,73	21,76	21,86	
C,H,	275—276	74.0	C14H14N4O2	62,51	62,21	5,12	5,22	20,53	20,72	
C ₃ H ₇	281-282	76,4	C15H16N4O2	63,28	63,36	5,85	5,67	20,11	19,70	
1130-C3H7	304-305	77,4	C15H16N4O2	63.04	63,36	5,50	5.67	19,64	19,70	
C ₄ H ₉	298-299	77,2	C14H18N4O2	64,60	64,41	6,24	6,08	19,11	18,78	
изо-С,Н,	269-270	73,8	C16H16N4O2	64.70	64,41	6,17	6,08	18,58	18,78	

ՊԻՐԻՄԻԳԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

XXY. 2-(4'-ԱԼԿՈՔՍԻԲՍՆԶԻԼ)-6-ՔԼՈՐ-8-ՄԵԹԻԼ- ԵՎ 6-ՕՔՍԻՊՈՒՐԻՆՆԵՐԻ ՍԻՆԹԵԶ

Հ. Ա. ՀԱՐՈՅԱՆ ԵՎ Ռ. Գ. ՄԵԼԻՔ-ՕՀԱՆՋԱՆՑԱՆ

Ldhnhnid

Նատրիումի Էթիլատի ներկայությամբ 4-ալկօքսիֆենիլացետամիդների հիդրոքլորիդների և ացետիլամինացիանքացախաթթվի էսթերի փոխազդմամբ 60—63% ելքերով սինթեղված են 2-4'-ալկօքսիբենզիլ)-4-ամինա-5-ացետիլ-ամինա-6-օքսի պիրիմիդիննար (III)։ Վերջիններից ֆոսֆորի օքսիքլորիդի ներ-կալությամբ 50-55° տաքացնելիս օքսիպուրիններ չեն առաջանում. սակայն ռեակցիան դիմեթիլանիլինի ներկայությամբ 120-130° կատարելիս փակվում է այուրինային օղակը միամամանակ հիդրօքսիլ խումբը փոխարինվում է քլորով և ստացվում են 2-(4'-ալկօքսիբենզիլ)-6-քլոր-8-մեթիլպուրիններ (I).

2-(4'-Ալկօքսիրենզիլ) պիրիմիդինները (III) ֆորմամիդի հետ $170-180^\circ$ տաքացնելիս 73-82% ելբերով ստացվում են 2-(4'-ալկօբսիբենզիլ)-6-օքսի-պուրիններ (II)։

ЛИТЕРАТУРА

- А. А. Ароян, Р. Г. Мелик-Оганджанян, Б. Т. Гарибджанян, Г. М. Степанян, Арм. хнм. ж., 21, 867 (1968).
- 2. А. А. Ароян, Р. Г. Мелик-Оганджанян, Авт. свид. 202122 (1967); Арм. хим. ж., 20, 314 (1967).
- З. Брит. пат. 583, 307 (1946) [С. А., 41, 2747 (1947)].
- 4. D. S. Acker. J. E. Castle, J. Org. Chem., 23, 2010 (1958).