XXIV, № 10, 1971

УДК 542.91+547.853.3

производные пиримидина

XXVIII. ДИЭТИЛЕНИМИДЫ 4-ХЛОР-5-(п-АЛКОКСИБЕНЗИЛ) -6-МЕТИЛПИ-РИ-МИДИЛ-2-АМИДОФОСФОРНЫХ КИСЛОТ

А. А. АРОЯН и М. С. КРАМЕР

Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР (Ереван)

Поступило 15 VII 1970

Установлено, что при взаимодействии 2-амино-4-хлор-5-(n-алкоксибензил)-6-метилпиримидинов с пятихлористым фосфором образуются соответственно 2-трихлор-фосфазопиримидины, строение которых доказано превращением их в дихлорангидриды пиримидил-2-амидофосфорных кислот и реакцией с морфолином с последующим гидролизом до диморфолида пиримидил-2-амидофосфорной кислоты.

Нуклеофильным замещением атомов хлора у фосфора в дихлорангидридах синтезпрованы диэтиленимиды и некоторые другие производные пиримидил-2-амидофосфорных кислот

Табл. 2, библ. ссылок 3.

Настоящая работа является продолжением исследований [1] по синтезу диэтиленимидов замещенных 5-(n-алкоисибензил) пиримидиламидофосфорных кислот с возможной противоопухолевой и мутагенной астивностью.

Диотиленимиды 4-хлор-5-(n-алкоксибензил) -6-метилинримидил-2-амидофосфорных жислот II синтезированы действием этиленимина на дихлорангидриды пиримидил-2-амидофосфорных кислот (I) в присутствии триотиламина по схеме:

$$\begin{array}{c|c}
C & CI \\
CH_{2} & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & OR \\
CH_{3} & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & OR \\
CH_{3} & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & OR \\
CH_{3} & CH_{3}
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & OR \\
CH_{3} & CH_{3}
\end{array}$$

$$\begin{array}{c|c}
R = CH_{3} - u30 - C_{4}H_{8}.$$

Диэтиленимиды II-кристаллические вещества, не растворимые в воде, хорошо растворимые в спиртах, хлороформе, бензоле, легко гидролизующиеся влагой воздуха.

Дихлорантидриды I, полученные взаимодействием 2-амино-4-хлор-5-(*п*-алкожоибензил)-6-метиллиримидинов с хлорокисью фосфора при 120—130°, не удалось закристаллизовать, поэтому они были введены в реакцию с этиленимином после промывания сухим эфиром. Для получения дихлорангидридов нами был выбран иной путь, позволяющий выделить последние в чистом виде и охарактеризовать их. Для этого 2-аминопиримидины III были подвергнуты фосфорилированию пятихлористым фосфором в импящем бензоле с последующим формолизом промежуточных продуктов безводной муравьиной кислоты до 1.

$$H_{2}N$$
 CH_{3}
 C

Дихлорангидриды получаются с выходами, близкими к количественным, и представляют собой светло-коричновые кристаллы, при стоянии на воздуже постепенно выделяющие клористый водород.

Кропачевой и Сазоновым [2] пожазано, что реакция 2-аминопиримидинов с различными заместителями в 4,5 и 4,6 положениях пиримидинового цикла с пятихлористым фосфором протекает по схеме, предложенной Кирсановым [3], причем в зависимости от основности исходного амина образуются трихлорфосфазопиримидины (рКа < 3,6) или их гидрохлориды (рКа > 3,6). Трихлорфосфазосоединения—неустойчные соединения, не выделяющиеся в чистом виде; строение их доказывается косвенным путем.

Нам удалось выделить продукт реакции III с пятихлористым фосфором и по аналогии с вышеприведенными работами предположить, что они имеют структуру трихлорфосфазосоединений IV. Последние кристаллизуются из летролейного эфира и легко гидролизуются на воздухе. Образование IV доказывалось формолизом продуктов фосформлирования в дихлорангидриды I. Кроме того, для подтверждения структуры IV было проведено взаимодействие последнего с морфолином, в результате чего легко образуется диморфолидохлорофосфазопиримидин V, строение которого подтверждено гидролизом в соответствующий диморфолид пиримидил-2-амидофосфорной кислоты VI, полученный встречным синтезом из дихлорангидрида I.

$$V \xrightarrow{HN} (\bigcirc N)_{2}^{CI} \xrightarrow{CH_{2}} OCH_{3} \xrightarrow{H_{3}O} OCH_{3} \xrightarrow{H_{4}O} OCH_{3} \xrightarrow{VI} OCH_{3}$$

$$\longrightarrow (\bigcirc N)_{2}^{CI} \xrightarrow{CH_{2}} OCH_{3} \xrightarrow{H_{4}O} OCH_{3}$$

$$VI \xrightarrow{HN} OCH_{3} OCH_{3}$$

Действие 3-кратного количества этиленимина в присутствии триотиламина на 2-прихлорфосфазопиримидины IV приводит к получению 2-триэтиленимидофосфазо-4-хлор-5-(n-алкоксибензил) -6-метилпиримидинов (VII).

$$IV \xrightarrow{NH(CH_2)_3} [(CH_2)_2N]_3P = N \xrightarrow{CI} CH_3 OR$$

$$VII$$

 $R=CH_3$, C_2H_5

Нуклеофильным замещением атомов хлора у фосфора в дихлорангидридах I при действии диэтиламина, бис-(в-хлорэтил) амина и абсолютного метанола были синтезированы диэтиламино-, бис-(в-хлорэтил) амино- и диметоксипроизводные I.

R'=a) $-N(C_2H_5)_2$; 6) $-N(CH_5CH_2CI)_2$; B) $-OCH_3$.

Соединения VIII кристаллизуются лишь после тщательного промывания петролейным эфиром и высушивания в важуум-эксикаторе, легко гидролизуются на воздухе.

Экспериментальная часть

Выход 2-трихлорфоофазо-4-хлор-5-(n-этоксибензил)-6-метилпиримидина 93,3%, т. лл. 125—126°. Найдено %: Cl 34,00. С₁₄Н₁₄N₃POCl₄. Вычислено %: Cl 34,33%.

Дихлорангидриды 4-хлор-5-(п-алкоксибензил)-6-метилпиримидил-2-амидофосфорных кислот (I). К бензольному раствору, пслученному з результате реакции 7,6 ммолей 2-аминопиримидинов с 1,6 г (7,6 ммоля) пятихлористого фосфора, при 10—15° и перемешивании постепенно прибавляют 0,44 г (7,6 ммоля) безводной муравьиной кислоты в 10 мл абсолютного эфира. Перемешивание продолжают еще 2 часа при комнатной температуре и оставляют стоять до следующего дня. Затем отго-

няют в вакууме бензол, остаток промывают петролейным эфиром и получают I (табл. 1).

Диэтиленимиды 4-хлор-5-(п-алкоксибензил)-6-метилпиримидил-2-амидофосфорных кислот (II). А. К раствору 0,43 г (0,01 моля) этиленимина и 1,01 г (0,01 моля) триэтиламина в 100 мл абсолютното бензола при 5—10° и перемешивании пърибавляют 0,005 моля дихлорангидрида. І. Затем смесь перемешивают 30 минут при той же температъре, 3 часн при 20° и оставляют до следующего дня. Выпавший гидрохлорид триэтиламина отфильтровывают, хорошо промывают бензолом, маточные растворы объединяют, упаривают и остаток кристаллизуют из петролейного эфира (табл. 2).

Таблица 2

R	Выход, °/а	Т. пл., °C	Молекулярная формула	Анализ, °/о			
				N		CI	
				найдено	вычис-	найдено	вычис-
CH ₃	73,5	142—143	C ₁₇ H ₂₁ N ₈ PO ₂ CI	17,76	17,78	9,30	9,00
C ₃ H ₅	90,0	161-163	C ₁₈ H ₂₃ N ₅ PO ₂ CI	16,99	17,17	9,09	8,09
C ₃ H ₇	95,0	122-123	C ₁₉ H ₂₅ N ₃ PO ₂ CI	16,42	16,60	8,71	8,40
изо-С,Н,	75,6	139—140	C ₁₉ H ₂₅ N ₅ PO ₂ Cl	16,29	16,60	8,11	8,40
C ₄ H ₉	70,4	144—145	C ₂₀ H ₂₇ N ₅ PO ₂ CI	15,70	16,06	7,88	8,13
изо-С4Н,	96,3	93—95	C ₂₀ H ₃₇ N ₅ PO ₂ CI	16,34	16,06	8,30	8,13

Б. Смесь 0,01 моля 2-аминопиримидина III и 8—9 мл хлорокиси фосфора нагревают 5—6 часов при 120—130°. Избыток хлорокиси фосфора пцательно опгоняют под уменьшенным давлением, а маслянистый остаток промывают абсолютным эфиром и растворяют в 50 мл абсолютного бензола. К бензольному раствору при перемешивании и охлаждении до 8—10° прибавляют 2 г (0,05 моля) этиленимина и 5 г (0,05 моля) триэтиламина.

Дальнейшее проведение реакции и обработка аналогичны способу A. Проба смещения с ображдом, полученным по способу A, не показывает

депресоии температуры плавления (табл. 2).

2-Диморфолидохлорфосфазо-4-хлор-5-(п-метоксибензил)-6-метилпиримидин (V). К раствору 2-трихлорфосфазопиримидина, полученному из 1,5 г (5,5 ммоля) 2-аминопиримидина ПП (R=CH₃) и 1,15 г (5,5 ммоля) пятихлористого фосфора в 60 мл абсолютного бензола, прибавляют в токе азота 1,9 г (22 ммоля) морфолина в 20 мл бензола при 8—10°. Реакционную смесь перемешивают полчаса при охлаждении, 3 часа при комнатной температуре и оставляют на ночь. Гидрохлорид морфолина отфильтровывают, промывают бензолом. последний отгоняют, а остаток кристаллизуют из петролейного эфира, высушивают в вакуум-эксикаторе и получают 2 г (83,8%) V, т. пл. 124—125. Найдено %: N 16,15; Cl 16,23. С₁₇Н₂₀N₈РО₂Cl₂, Вычислено %: N 16,35; Cl 16,55.

Диморфолид 4-хлор-5-(п-метоксибензил)-6-метилпиримидил-2-амидофосфорной кислоты (VI). А. Раствор II г (2,3 ммоля) V в 30 мл 96%-ного этанола кипятят полчаса, охлажидают, спирт отгоняют. Остаток кристаллизуется после сущки в вакуум-эксикаторе.

Б. К раствору 0,68 г (10,4 ммоля) морфолина в 50 мл абсолютного бензола при 8—10° и перемешивании прибавляют 1 г (2,6 ммоля) диклюрангидрида 5-(п-метоксибензил) пиримидил-2-амидофосфорной кислоты. Затем реакционную смесь перемешивают 3 часа при комнатной температуре и оставляют на ночь. Гидрохлорид морфолина отфильтровывают; после отгонки растворителя остаток кристаллизуетоя в вакуум-эксикаторе. Проба смешения с образцом, полученным, по способу A, не дает депрессии температуры плавления.

Выход VI 0,1 г (66,6%), т. пл. 98—99°. Найдено %: N 12,56

Cl 6,40. С₂₁Н₂₉N₅O₄Cl. Вычислено ⁰/₀: N 12,11; Cl 6,13.

2-Триэтиленимидофосфазо-4-хлор-5-(п-метоксибензил)-6-метил-пиримидин (VII). К бензольному раствору IV, полученному из 3 г (0,011 моля) III ($R=CH_3$) и 2,3 г (0,011 моля) пятихлористого фосфора, при $8-10^\circ$ и перемешивании прибавляют 1,68 г (0,033 моля) этиленимина и 3,3 г (0,033 моля) триэтиламина в 30 мл абсолютного бензола. После этого реакционную массу перемешивают 2 часа при 20° , гидрохлорид триэтиламина отфильтровывают, бензол отгоняют, а остаток промывают петролейным эфиром и получают 3 г ($63,8^\circ$ /₀) VII, т. пл. $187-188^\circ$ (с разл.). Найдено 0° /₀: N 20,30; C1 8,08. $C_{10}H_{24}N_0$ POCI. Вычислено 0° /₀: N 20,06; C1 8,46.

2-Триэтиленимидофосфазо-4-хлор-5-(n-этоксибензил)-6-метилиримидин, получен аналогично из 2 г (7,2 ммоля) III ($R=C_2H_3$). Выхол 3 г (96,2%), т. пл. 230—231° (с разлож.). Найдено %: N 18,90;

С1 7,84. С₂₀Н₂₆N₆POCI. Вычислено %: N 19,41, CI 8,19.

 $\mathcal{L}u$ - (диэтиламид)-4-хлор- 5-(n-метоксибензил)-6-метилпиримидил-2-имидофосфорной кислоты (VIIIа) получают аналогично соединению VI по способу Б из 1,5 г (3,9 ммоля) дихлорангидрида I ($R=CH_3$), 1,14 г (15,6 ммоля) диэтиламина в 50 мл абсолютного бензола. Выход VIIIа 1 г (58,86/ $_0$), т. пл. 97—98°. Найдено $_0$ 0: N 15,00; C1 7,60. $C_{21}H_{33}N_3PO_2CI$. Вычислено $_0$ 2: N 15,42; CI 7,81.

 \mathcal{L} и-(бис- β -хлорэтиламид)-4-хлор-5-(n-метоксибензил)-6-метил-пиримидил-2-амидофосфорной кислоты (VIII6) получают из 1,5 г (3,9 ммоля) I, 2,2 г (15,6 ммоля) бис- β -хлорэтиламина с выходом 1,5 г (65,2%), т. ил. 87—88°С. Найдено %: N 11,60; Cl 30,25. $C_{v_1}H_{v_2}N_{s}PO_{s}Cl_{s}$.

Вычислено %: N 11,83; C1 29,95.

2-Диметоксифосфониламино-4-хлор - 5-(n-метоксибензил)-6-метомилиримидин (VIIIв). К 10-15 мл абсолютного метанола при охлаждении и перемешивании прибавляют 1 г (2,6 ммоля) III (R= CH_3), не допуская повышения температуры реакционной смеси до $10-15^\circ$. Затем оставляют смесь при комнатной температуре на 2-3 часа, метанол отгоняют, остаток кристаллизуют из петролейного эфира и высушивают. Выход VIIIв 0,8 г (82,4%0), т. пл. $103-104^\circ$. Найдено %0: N 11,20%0, CI 9,76%0. $C_{15}H_{19}N_3$ PO $_4$ CI. Вычислено %0: N 11,30, CI 9,53.

ՊԻՐԻՄԻԴԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

4-ՔԼՈՐ–5– (պ–ԱԼԿՕՔՍԻԲԵՆԶԻԼ) –6–ՄԵԹԻԼՊԻՐԻՄԻԴԻԼ–2–ԱՄԻԴԱՖՈՍՖՈՐԱԿԱՆ ԹԹՈՒՆԵՐԻ ԴԻԷԹԻԼԵՆԻՄԻԴՆԵՐ

Հ. Ա. ՀԱՐՈՑԱՆ և Մ. Ս. ԿՐԱՄԵՐ

Udhnhnid

Ցուլց է տրված, որ 2-ամինա-4-քլոր-5-(պ-ալկօքսիբենզիլ)-6-մեթիլպիրիմիդիննևրի և ֆոսֆորի պենտալքլորիդի փոխազդմամբ առաջանում են 2-տրիքըլոր-ֆոսֆազոպիրիմիդներ,որոնց կառուցվածքն ապացուցված է նրանց սլիրիմիդիլ-2-ամիդաֆոսֆորական Թթուների քլորանհիդրիդների և դիմորֆոլիդաբլորֆոսֆազոպիրիմիդինի փոխարկելով։ Վերջինիս հիդրոլիզով ստացված է
պիրիմիդիլամիդաֆոսֆորական Թթվի դիմորֆոլիդ։ Եթիբենիմինի և 2-տրիքլորֆոսֆազոպիրիմիդինների փոխազդմամբ սինթեզված են 2-տրիէթիլենիմիդաֆոսֆազո-4-քլոր-5-(պ-աւտնօքսիբենզիլ)պիրիմիդներ։ Դիքլորանհիդրիդներից
բլորի ատոմի նուկլեոֆիլ տեղակալմամբ ստացված են դիվթիլամինա-,
բիս-(β-քլորեթիլ)ամինա- և դիմեթօքսիածանցյալներ։

ЛИТЕРАТУРА

- 1. М. С. Крамер, А. А. Ароян, Арм. хим. ж., 23, 268 (1970)
- 2 А. А. Кропачева, Н. В. Сазонов, ХГС 1985, 1987 372.
- 3. А. В. Кирсанов, Изв. АН СССР, ОХН, 1952, 711; 1954, 646.