XXIII, № 9, 1970

УЛК 541.69+547.759.4

#### производные изоиндолина

III. N-(β-ДИАЛКИЛАМИНОЭТИЛ)-5-ХЛОРтранс-3a,4,7,7a-ТЕТРАГИДРОИЗОИНДОЛИНЫ

ы. г. рашидян. С. Н. АСРАТЯН, Л. В. ХАЖАКЯН, Л. В. ШАХБАЗЯН и г. т. татевосян

Институт тонкой органической химии АН Армянской ССР Поступило 19 XI 1969

Описан синтез N-(β-дналкиламиноэтил)-5-хлор-транс-3а,4,7,7а-тетрагидроизонндолинов. Сравнительное изучение гипотензивных свойств дийодметилатов стереомерных диаминов с цис- и транс-сочленением пирролидинового и циклогексенового колец показало, что соединения транс-строения активне цис-изомеров.

Исследованы ИК спектры частично гидрированных в изоиндолиновом ядре стереомерных диаминов.

Рис. 10, табл. 3, библ. ссылок 2.

С целью установления зависимости между биологическими свойствами аминопроизводных изомндолина и их пространственным строением ранее [1] были синтезированы диамины изоиндолинового ряда I, в которых пирролидиновое и циклогоксеновое кольца имели цис-сочленение

В настоящей статье описывается синтез диаминов II, имеющих транс-сочленение тех же колец, и сообщаются результаты предварительного изучения гипотензивной активности дийодметилатов изомерных соединений.

Основания II синтезированы по следующей схеме:

Взаимодействием описанного ранее транс-дибромида III с коламином получен N-(β-оксиэтил)-5-хлор-транс-За,4,7,7а-тетрагидроизонндолин IV. Кипячением бензольного раствора аминоспирта IV с избытком хлористого тионила синтезирован гидрохлорид соответствующего хлорамина V. Конечные продукты синтеза — диамины II, получались нагреванием гидрохлорида Vв автоклаве с избыточными количествами вторичных аминов в присутствии каталитических количеств йодистого натрия.

Выяснено, что этот путь синтеза не может быть использован для получения диаминов цис-строения 1; из описанного ранее [1] N-(β-хлор-лучения диаминов цис-строения I; из описанного ранее [1] N-(β-хлор-этил)-5-хлор-цис-За,4,7,7а-тетрагидроизоиндолина и морфолина этим За,4,7,7а-тетрагидроизоиндолинов. Хроматограммы полученной смеси (A), а также чистых цис-(Б) [1] и транс- (В) изомеров этого диамина приведены на рисунке 1.

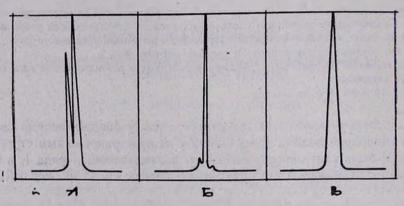



Рис. 1. Хроматограммы N-(β-морфолинил-1-этил)-5-хлор-3а,4,7,7а-тетрагид-роизоиндолина: А — смесь изомеров; Б — цис-изомер; В — транс-изомер, Хроматограф ЛХМ-7А; хлористый натрий, пропитанный 1°/<sub>0</sub> полиэтилентликоля и 0,5°/<sub>0</sub> КОН.

Имея в своем распоряжении стереомерные пары диаминов I и II, мы использовали их для установления различий в спектрах поглощения стереомерных частично гидрированных соединений изоиндолинового строения; следовало полагать, что различие в пространственном положении ангулярных протонов найдет отражение в ИК спектрах. Из приведенных спектров (рис. 2—7) видно, что валентные колебания связя С=С у транс-изомеров лежат в области 1635 см<sup>-1</sup>, а у цис-изомеров интенсивность поглощения в этой области сильно снижена и имеется сильное поглощение при ~1658 ± 5 см<sup>-1</sup>.

В опектрах *цис*-изомеров имеется поглощение при 800 *см*<sup>-1</sup> в спектрах же *транс*-изомеров эта полоса смещена до 820 *см*<sup>-1</sup>; она может быть приписана деформационным колебаниям ангулярных атомов водорода. Небольшое, но четкое поглощение при 605 *см*<sup>-1</sup> в спектрах *транс*-

изомеров, по-видимому, связано с колебаниями связи С—СІ; в этой области поглощение в спектрах цис-изомеров отсутствует.

В спектре упоминавшегося выше продукта взаимодействия N-( $\beta$ -хлорэтил)-5-хлор- $\mu$ ис-3а,4,7,7а-тетрагидроизохинолина с морфолином (рис. 8) полосы поглощения, соответствующие валентным колебаниям C=C связи, наблюдаются как при 1635, так и при  $\sim$ 1658 $\pm$ 5 см<sup>-1</sup>; имеются также полосы поглощения при 800,  $\sim$ 820 и 605 см<sup>-1</sup>. Наличие этих полос поглощения подтверждает образование смеси изомеров

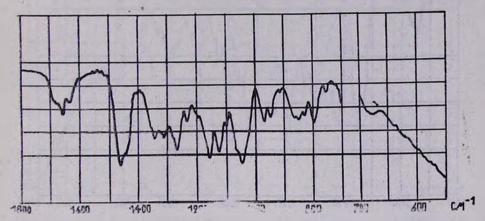



Рис. 2. Спектр N-(β-диметиламиноэтил)-5-хлор-цис-3а,4,7,7а-тетрагидроизоиндолина.

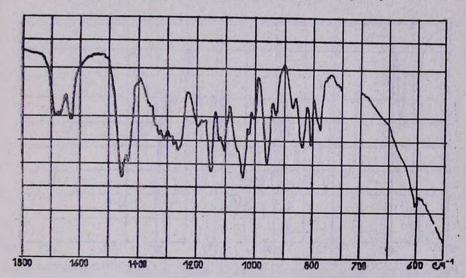



Рис. 3. Спектр N-(9-диметиламиноэтил)-5-хлор-*транс*-3a,4,7,7a-тетрагидроизоиндолина.

Предварительное изучение гипотензивной активности дийодметилатов диаминов I и II проводилось на наркотизированных гексеналом кошках. Контрольные опыты ставились с эколидом [1]. Все исследованные соединения в той или иной степени понижают кровяное давление; количественные данные приведены в габлице 1. Из табличных данных видно, что во всех исследованных парах соединений изомеры транс-строения активнее цис-изомеров. Можно полагать, что различие в активности изомеров обусловлено их различной адсорбируемостью на рецепторах; по-видимому, более плоские молекулы транс-изомеров (рис. 9), легче рецептируются, чем цис-изомеры (рис. 10), имеющие ангулярное строение.

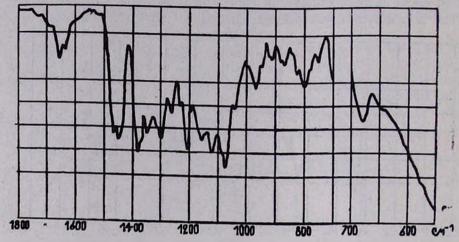



Рис. 4. Спектр N-(α-диэтиламиноэтил)-5-хлор-цис-За,4,7,7а-тетрагидроизоиндолина.

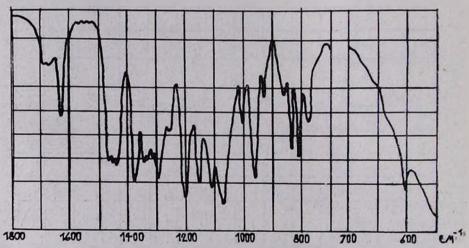



Рис. 5. Спектр N-(β-диэтиламиноэтил)-5-хлор-транс-За,4,7,7а-тетрагидроизонндолина.

Из таблицы 1 видно также, что дийодметилаты диаминов трансстроения с пиперидиновым и пирролидиновым остатками, а также цисаналог последнего (VI) [1] значительно более активны, чем эколид. Каквидно из таблицы 2, эти препараты менее токсичны, чем эколид.

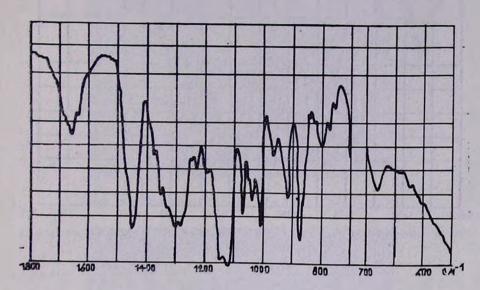



Рис. 6 Спектр N-(\$-морфолинил-1-этил)-5-хлор-цис-За,4,7,7а-тетрагидроизоиндолина.

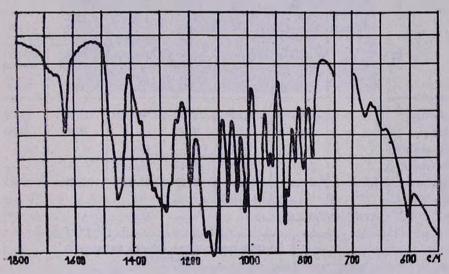



Рис. 7. Спектр N-(9-морфолинил-1-этил)-5-хлор-*транс*-3а,4,7,7а-тетрагидроизоиндолина.

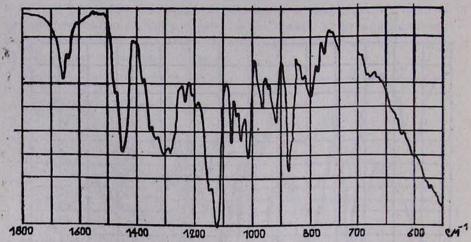



Рис. 8. Спектр смеси стереомеров N-(β-морфолинил-1-этил)-5-хлор-3а,4,7,7а-тетрагидроизонндолина.

Таблица 1

|                    | Цис/тринс                          |                                     |                                    |                                     |                                    |                                     |  |  |  |
|--------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|--|--|--|
|                    | 0,5                                | мг/кг                               | 1 .4                               | г/кг                                | 2 мг/кг                            |                                     |  |  |  |
| R <sub>2</sub>     | депрес-<br>сорный<br>эффект,<br>мм | продол-<br>житель-<br>ность,<br>мин | депрес-<br>сорный<br>эффект,<br>мм | продол-<br>житель-<br>ность,<br>мин | депрес-<br>сорный<br>эффект,<br>мм | продол-<br>житель-<br>пость,<br>мин |  |  |  |
| Диметил            | 0/50                               | 0/35                                | 0/50                               | 0/40                                | 20/56                              | 18,50                               |  |  |  |
| Диэтил             | 0/0                                | 0/0                                 | 0/20                               | 0/18                                | 0/40                               | 0/30                                |  |  |  |
| Тетраметилен       | 40/60                              | 18/140                              | 50/—                               | 46/—                                | -/-                                | -/-                                 |  |  |  |
| Пентаметилен       | 30/0                               | 16/0                                | 40/40                              | 36/120                              | -/                                 | -1-                                 |  |  |  |
| 3-Оксатетраметилен | 20/30                              | 14/20                               | 26/28                              | 22/20                               | 20/20                              | 30,38                               |  |  |  |

Таблица 2 Острая токсичность (опыты на мышах; подкожно) II, NR2= абсолютная переносимая LD<sub>50</sub>, мг/кг смертельная доза, мг/кг доза, мг/кг 1-Пирролидил 100 240 300 1-Пиперидил 200 320 400 VI 200 280 400 эколид 100 180 300

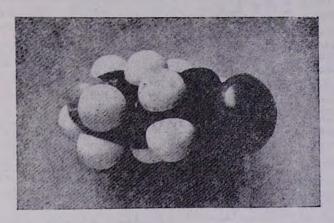



Рис. 9. Модель 5-хлор-транс-3а,4,7,7а-тетрагидроизоиндолина.

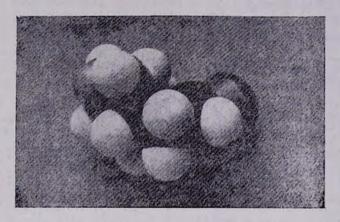



Рис. 10. Модель 5-хлор-цис-За,4,7,7а-тетрагидроизоиндолина.

## Экспериментальная часть

N-( $\beta$ - $O\kappa$ сиэтил)-5-хлор-транс-3a,4,7,7a-тетрагидроизоиндолин (IV)-Смесь 75,6 z (0,25 моля) транс-дибромида III и 475,5 z (7,5 моля)  $\beta$ -оксиэтиламина нагревалась с обратным холодильником 3 часа. После отгонки избытка коламина при  $90-110^\circ/27$  мм к остатку прибавлено небольшое количество воды и раствор сильно подщелочен едким кали. Раствор экстрагирован хлороформом и экстракт высушен над сернокислым натрием. После отгонки . хлороформа остаток перегнан в вакууме Получено 36,3 z (71,9%) жидкости светло-желтого цвета, кипящей при  $165-168^\circ/5$  мм;  $d_4^{20}$  1,1516;  $n_D^{20}$  1,5258;  $MR_D$  найдено 53,74, вычислено 53,84. Найдено 0/0: С 60,00; Н 8,40; N 6,96; СI 17,96.  $C_{10}$ Н $_{16}$ ONCI. Вычислено 0/0: С 59,55; Н 7,94; N 6,94; СI 17,61.

Гидрохлорид осажден из эфирного раствора; т. пл. 135—136°. Найдено %: С1 30,10. С₁оН₁6NOС1·НС1. Вычислено %: С1 29,80.

| R                  | 100   | В Т. кип.,<br>°С/мм | Молекулярная<br>формула                            | d <sub>4</sub> <sup>20</sup> | n <sup>20</sup> | MR <sub>D</sub> |           |         | Анализ, 0/0 |         |        |         |                | 4       |          |
|--------------------|-------|---------------------|----------------------------------------------------|------------------------------|-----------------|-----------------|-----------|---------|-------------|---------|--------|---------|----------------|---------|----------|
|                    |       |                     |                                                    |                              |                 | найдено         | вычислено | найдено | О - ОНЭГ    | найдено | вычис- | найдено | Вычис-<br>лено | найдено | CI -JAHO |
| Диметил            | 79,23 | 142—144/5           | C <sub>12</sub> H <sub>21</sub> N <sub>2</sub> Cl  | 1,0369                       | 1,5041          | 65,315          | 65,496    | 62,70   | 63,01       | 8,70    | 9,19   | 12,60   | 12,25          | 15,85   | 15,53    |
| Диэтил             | 59,20 | 160—162/5           | C14H25N2C1                                         | 1.0127                       | 1,5011          | 74,636          | 74,732    | 65,03   | 65,49       | 10,10   | 9,97   | 10,80   | 10,91          | 13,27   | 13,81    |
| Тетраметилен       | 66,60 | 182—184/5           | C14H23N2CI                                         | 1,0666                       | 1,5198          | 72,528          | 72,532    | 65,50   | 66,01       | 9,40    | 9,03   | 11,34   | 11,00          | 13,43   | 13,90    |
| Пентаметилен       | 63,00 | 193-195/5           | C15H25N2CI                                         | 1,0535                       | 1,5208          | 77,582          | 77,150    | 67,30   | 67,04       | 9,20    | 9,30   | 10,37   | 10,42          | 12,78   | 13,22    |
| 3-Оксатетраметилен | 65,00 | 201-204/5           | C <sub>14</sub> H <sub>23</sub> N <sub>2</sub> CIO | 1,1094                       | 1,5220          | 74,364          | 74,175    | 62,02   | 62,10       | 8,50    | 8,50   | 10,06   | 10,35          | 13,50   | 13,10    |

Tafugu 4

| R <sub>2</sub>     | R <sub>f</sub> | Дийс          | одметилат     | ***              | Дигидрохлорид*** |                                     |                   |  |
|--------------------|----------------|---------------|---------------|------------------|------------------|-------------------------------------|-------------------|--|
|                    |                | т. пл.,<br>°С | анали         | 13, º/o          |                  | анализ, <sup>0</sup> / <sub>0</sub> |                   |  |
|                    |                |               | найдено<br>Ј— | вычис-<br>лено Ј | т. пл.,<br>°C    | найдено<br>С1                       | вычис-<br>лено С1 |  |
| Диметил            | 0,65*          | 237—238       | 49,00         | 49,55            | 264—266          | 23,28                               | 23,54             |  |
| Диэтил             | 0,66**         | 223—225       | 47,07         | 46,98            | 210—212          | 21,20                               | 21,54             |  |
| Тетраметилен       | 0,61*          | 237—240       | 46,70         | 46,98            | 288—290          | 21,46                               | 21,67             |  |
| Пентаметилен       | 0,72*          | 230—231       | 46,30         | 45,97            | 297—298          | 20,53                               | 20,79             |  |
| 3-Оксатетраметилен | 0.73*          | 217-219       | 45,33         | 45,80            | 292294           | 20,00                               | 20,66             |  |

<sup>•</sup> Тонкослойная хроматография на окиси алюминия II степени активности; проявление парами йода. Система: бензол-метанол-гептан (5:1:1).

**<sup>\*\*</sup>** Система: ацетон—гептан (1:1).

<sup>\*\*\*</sup> Дийодметилаты и дигидрохлориды осаждены из эфирных растворов.

Пикрат осажден из спиртового раствора; т. пл. 142—143°. Найдено %: N 12,30. С₁₀Н₁₀ОNСІ⋅С₀Н₃О₁№3. Вычислено %: N 13,00.

Гидрохлорид N-( $\beta$ -хлорэтил)-5-хлор-транс-3а, 4, 7, 7а-тетрагидро-изохинолина (V). К смеси 37,2 z (0,18 моля) аминоспирта IV и 400 мл сухого бензола при перемешивании и охлаждении льдом прибавлено 24,2 z (0,2 моля) свежеперегнанного хлористого тионила. Смесь кипятилась 8 часов. После охлаждения осадок отфильтрован и промыт несколько раз сухим эфиром. Получено 44,9 z (95,2%) бесцветных кристаллов с т. пл. 195—197°. Найдено %: С 46,60; Н 6,02; N 5,44; СІ 41,18.  $C_{10}H_{15}NCl_2\cdot HCl$ . Вычислено %: С 46,79; Н 6,23; N 5,45; СІ 41,45.

N-(β-Диалкиламинсэтил)-5-хлор-транс-3а, 4, 7, 7а-тетрагидроизоиндолины (II). Смесь 25,6 г (0,1 моля) гидрохлорида V, 0,4 моля вторичного амина и 2 г йодистого натрия нагревалась в автоклаве на масляной бане при 160° в течение 18 часов. После окончания нагревания реакционная смесь обрабатывалась раствором щелочи, основание экстрагировалось эфиром, экспракт высушивался над сернокислым натрием, эфир и 
избыток исходного амина отгонялись, а остаток перегонялся в вакууме. Перегнавшееся основание очищалось от примесей хроматографированием на колонке с окисью алюминия. Выходы и свойства диаминов II 
указаны в таблицах 3 и 4.

N-( $\beta$ -Морфолинил-I-этил)-5-хлор-3a, 4, 7, 7a-тетрагидроизоиндоли:1. Описанным выше способом из 12,1  $\epsilon$  (0,047 моля) гидрохлорида N-( $\beta$ -хлорэтил) - 5 - хлор-4uc-3a, 4, 7, 7a-тетрагидроизоиндолина [1], 16,4  $\epsilon$  (0,188 моля) морфолина и 1  $\epsilon$  йодистого натрия получено 10,2  $\epsilon$  (80%) смеси стереомерных N-( $\beta$ -морфолинил-1-этил)-5-хлор-3a, 4, 7, 7a-тетрагидроизоиндолинов в виде светло-желтого масла с  $\tau$ . кип. 195—200°/3 мм. Найдено %: C 52,70; H 8,80; N 10,30; C 13,30. C 14C 20C 20C 21. Вычислено C 26,10; C 18,50; C 10,35; C 13,10.

## ԻԶՈՒՆԴՈԼԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐ

III. N-( -ԳԻԱԼԿԻԼԱՄԻՆԱԷԹԻԼ)-5-ՔԼՈՐ-առանս-3a,4,7,7a-SbSՐԱՀԻԳՐՈՒԶՈՒՆԴՈԼԻՆՆԵՐ

ዓ. ቡዜሯኮԴՑԱՆ, ሀ. Ն. ՀԱՍՐԱԹՑԱՆ, Լ. Վ. ԽԱԺԱԿՑԱՆ,
 Լ. Վ. ՇԱՀԲԱԶՑԱՆ և Գ. Տ. ԹԱԴԵՎՈՍՑԱՆ

# Udhnhnid

Նկարագրված է N-(β-դիալկիլամինաէԹիլ)-5-ջլոր- տրանս-3a,4,7,7aտետրահիդրոիզոինդոլինների սինԹեզ։ Հաղորդվում են ցիս- և արանս-կառուցվածքի իզոինդոլինային կորիզ պարունակող ստերեոմեր դիամինների ֆարմակոլոգիակա նախնական փորձարկման արդյունջները. տրանս-կառուցվածքի միացուԹյունների հիպոԹենզիվ ակտիվուԹյունն ավելի բարձր է, ջան ցիս-կառուցվածքի միացուԹյուններինը։ Ուսումնասիրվել են իզոինդոլինային կորիզում մասնակիոր<mark>են Տիդրված</mark> ստերեոմեր դիամինների ինֆրակարմիր սպեկտրները։

#### ЛИТЕРАТУРА

1. Л. Г. Рашидян, С. Н. Асратян, К. С. Карагезян, А. Р. Мкртчян, Р. О. Седракян, Г. Т. Татевосян, Арм. хим. ж., 21, 793 (1968).