2 U 3 4 U 4 U 5 & Р Г Р U 4 U 5 U Г U U 4 Р Г АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXIII, № 9, 1970

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542.944.4+547.32+547.233

ЗАМЕЩЕНИЕ ХЛОРА АМИНАМИ В ДИАЛКИЛПРОПЕНИЛАЦЕТИЛЕНОВЫХ ХЛОРИДАХ

Ш. О. БАДАНЯН, М. Г. ВОСКАНЯН и Г. Г. ХУДОЯН Институт органической химии АН Армянской ССР Поступило 12 XI 1969

В противоположность винилацетиленовым галогенидам, при замещении галогензаминами в пропенилацетиленовых галогенидах образуются только кумуленовые амины. Табл. 1, библ. ссылок 6.

Сравнительно недавно было показано, что замещение галогена аминами в винилацетиленовых галогенидах приводит к образованию смеси винилацетиленовых, алленовых и кумуленовых аминов [1], причем объемистые заместители у углерода, связанного с галогеном, опособствуют образованию кумуленовых аминов [2].

Если замещение галогена аминами в винилацетиленовых галогенидах протекает при 0—20° в течение 2—5 дней или же при нагревании реакционной смеси при 50—70° в течение 3—1 часов [3], то в случае изопропенилацетиленовых галогенидов для протекания реакции необходямо нагревание реакционной смеси на кипящей водяной банс в течение 18—20 часов [4], при этом не удавалось выделить ожидаемые кумуленовые амины. Таким образом, замена водорода у вторичного углеродного атома винильной группы на метильную, сильно затрудняет замещение.

Для получения полного представления о ходе замещения галогена аминами в винилацетиленовых галогенидах необходимо было введение алкильного заместителя у конечного углеродного атома винильной грушпы с целью установления влияния на направленность реакции. В качестве объекта исследования были избраны пропенилацетиленовые хлориды.

Оказалось, что в противоположность изопропенилацетиленовым галогенидам, замещение галогена аминами в пропенилацетиленовых хлоридах I протекает легко, при комнатной температуре; единственными продуктами реакции являются кумуленовые амины II, т. е. при этом полностью подавляется скорость реакции нормального замещения.

$$\begin{array}{c} R^{I} \\ R^{II} \end{array} \nearrow C(CI)C \equiv CCH = CHCH_3 \longrightarrow \begin{array}{c} R^{I} \\ R^{II} \end{array} \nearrow C = C = C = CHCH(CH_3)N \\ R^{III} \end{array}$$

$$I \qquad \qquad II = R^{II} = R^{II} = R^{II} = R^{II} = CH_3, \quad R^{I} = C_2H_5;$$

$$B. \quad R^{I} = R^{II} = CH_3, \quad R^{III} \quad \text{и} \quad R^{IV} = \text{пентаметилен}; \quad r. \quad R^{I} = CH_3. \quad R^{II} = C_2H_5,$$

$$R^{III} \quad \text{и} \quad R^{IV} = \text{пентаметилен}.$$

В ИК спектрах аминов IIa, б, в, г найден ряд интенсивных полос поглощения в сбласти 2070, 1610, 1620, 1690, 1700, 1030—1060, 870 см⁻¹; в них отсутствовали частоты, характерные для тройной связи и алленовой группировки. Эти данные полностью совпадают с данными, полученными ранее изми [1—3], а также другими авторами [5].

Поведение метильной группы в обоих случаях можно объяснить, если учесть возлействие электронного эффекта метильной группы на общую направленность электронного смещения винилацетиленовой системы. Так, в случае изопропенилацетиленовых галогенидов метильная группа, находящаяся в толожении, взаимодействует с двойной овязью винилацетиленовой системы таким образом, что появляется частичный отрицательный заряд на конечном атоме углерода винильной группы, чем и затрудняется атака нуклеофильного агента (амина) на этот углерод. В случае же пропенилацетиленовых хлоридов влияние метильной группы направлено в сторону общей поляризации всей системы, что создает возможность более легкого отщепления галоген-аниона, т. е. значительно облегчается атака амина на конечный углеродный атом винильной группы:

$$\begin{array}{c}
X \\
C-C = C-C-CH_{2}
\end{array}$$

$$\begin{array}{c}
X \\
C-C = C-CH = CH + CH_{3}
\end{array}$$

Однако, в отличие от винилацетиленовых хлоридов, в данном случае выходы кумуленов низки, так как реакция сопровождается отщеплением хлористого водорода или анионотропной изомеризацией с образованием диенина и хлораллена*, что по всей вероятности, объясняется пространственным эффектом метильной группы.

Исходные пропенилацетиленовые хлориды синтезированы, исходя из соответствующих непредельных карбинолов,, получаемых реакцией Фаворского из пропенилацетилена и кетонов.

Экспериментальная часть

Диметилпропенилэтинилкарбинол. К 16,8 г (0,3 моля) едкого кали при охлаждении льдом прибавлено 6,6 г (0,1 моля) пропенилацетилена [6]. Затем в течение 30 минут при 0—5° и перемешивании по каплям вне-

^{*} По данным ИК спектров.

сено 11,6 г (0,2 моля) ацетона. Перемешивание продолжалось при этой температуре еще 3 часа. К реажционной смеси прибавлен эфир, смесь гидролизована при охлаждении 20 мл воды. Водный слой экстрагирован эфиром, эфирный экстракт нейтрализован разбавленной соляной кислотой, высушен над сернокислым магнием; после отгонки эфира остаток перегнан в вакууме. Получено 9,17 г (73,9%) диметилпропенилэтинил-карбинола; т. кип. 72—73°/13 мм; про 1,4775; d 0,9022. МRр найдено 38,92, вычислено 38,20. Найдено %: С 76,52; Н 9,61. С8Н12О. Вычислено %: С 77,42; Н 9,68.

Метилэтилпропенилэтинилкарбинол. Аналогично из 13,2 г (0,2 моля) пропенилацетилена и 18г (0,25 моля) метилэтилкетона получено 18,1 г (65,6%) метилэтилпропенилэтинилкарбинола, т. кип. 79—80°/10 мм; n_D^{20} 1,4778; d_4^{20} 0,8779. М R_D найдено 44,47, вычислено 42,82. Найдено %: С 77,76; Н 10,52. С $_8H_{14}O$. Вычислено %: С 78,26; Н 10,14 [7].

Диметилпропенилэтинилхлорметан (I, $R'=R''=CH_3$). В колбу помсщено 12,02 z (0,042 моля) диметилпропенилэтинилкарбинола и при охлаждении ледяной водой пропущено 1,82 z (0,05 моля) хлористого водорода. После отделения выделившегося водного слоя остаток высушен над хлористым кальцием и перегнан в вакууме. Получено 8 z (58,2%) диметилпропенилэтинилхлорметана; т. кип. 55—56°/12 мм; Π_D^{20} 1,4801; d_4^{20} 0,9226. MR_D найдено 43,93, вычислено 41,54. Найдено θ_0 : C1 24,50. C_8H_{11} C1. Вычислеоо θ_0 : C1 24,88.

Метилэтилпропенилэтинилхлорметан (I, $R'=CH_3$, $R''=C_2H_5$). Аналогично из 17,3 г (0,11 моля) метилэтилпропенилэтинилкарбинола и 3,65 г (0,1 моля) хлористого водорода получено 15, 22 г (77,7%) метилэтилпропенилэтинилхлорметана; т. кип. 78—79°/19 мм; n_D^{20} 1,4883; d_4^{20} 0,9029. М R_D найдено 49,96, вычислено 46,16. Найдено O_0 : Cl 21,93. C_0H_{13} Cl. Вычислено O_0 : Cl 22,64.

Взаимодействие диалкилпропенилэтинилхлорметанов с аминами. Смесь 0,022—0,039 моля галогенида I и 0,06—0,1 моля вторичного амина в присутствии 0,4—0,8 мл воды в запаянной ампуле оставлялась при комнатной температуре в течение 4 дней*. После удаления непрореагировавшего амина остаток подкислялся соляной кислотой, непрореагировавший хлорид (диенин) экстрагировался эфиром. Водный раствор органических оснований нейтрализовался поташом, экстрагировался эфиром, высушивался сульфатом магния и после отгонки эфира остаток разгонялся в вакууме. Константы полученных аминожумуленов приведены в таблице.

^{*} С увеличением продолжительности реакции выход аминокумуленов падает.

Таблица

Кумуленовые амины

Соединения	Buxon, 0/0	Т. кип., °С/ <i>мм</i>	d ²⁰	n20	Молекулярная формула	найдено	вычислено	Анал	Вычнс- лено	Т. пл. пикрата, °C
a	35,8	56/2,5	0,8414	1,5094	C10H16N	53,26	50,10	9,44	9,26	104—106
б	38,2	79-80/4	0,8628	1,5019	C11H18N	55,38	55,54	7,79	8,48	_
В	23,7	95—96/3		1,5128	C ₁₃ H ₃₁ N	_	_	6,96	7,32	-
г	34,9	123—125/5	0,8993	1,5028	C14H23N	67,36	67,20	6,78	6,83	_

ՔԼՈՐԻ ՏԵՂԱԿԱԼՈՒՄԸ ԱՄԻՆՆԵՐՈՎ ԴԻԱԼԿԻԼՊՐՈՊԵՆԻԼԱՑԵՏԻԼԵՆԱՅԻՆ ՔԼՈՐԻԴՆԵՐՈՒՄ

Շ. Հ. ՔԱԴԱՆՑԱՆ, Մ. Գ. ՈՍԿԱՆՑԱՆ և Գ. Գ. ԽՈՒԴՈՑԱՆ

Luhnhnid

Վինիլացետիլենային հալոգենիդներում հալոգենն ամիններով տեղակալելու ռեակցիայի ընթացքի վրա տեղակալիչների ազդեցությունը պարզելու նպատակով ուսումնասիրվել է պրոպենիլացետիլենային քլորիդներում (I) բլորը ամիններով տեղակալելու ռեակցիան։ Ցույց է տրվել, որ ի տարբերություն վինիլացետիլենային հալոգենիդների, նշված քլորիդներում քլորը ամիններով տեղակալելու ռեակցիան ընթանում է բացառապես կումուլենային ամիների (II) առաջացման ուղղությամբ։

ЛИТЕРАТУРА

- С. А. Вартанян, Ш. О. Баданян, Изв. АН Арм. ССР, ХН, 15, 307 (1962); Тезисы докл.
 Всесоюзн. науч. конференции по проблеме «Синтезы на базе ацетилена», Ереван,
 1962, стр. 69.
- С. А. Вартанян, Ш. О. Баданян, А. В. Мушегян, Изв. АН Арм. ССР, ХН, 19, 864 (1966).
- 3. С. А. Вартанян, Ш. О. Баданян, А. В. Мушегян, Изв. АН Арм. ССР, XH, 16, 547 (1963), 17, 505 (1964).
- 4. С. А. Вартанян, Ш. О. Баданян, М. Р. Бархударян, Изв. АН Арм. ССР, ХН, 26, 819 (1967).
- W. M. Schubert, T. H. Liddicoet, W. A. Lanke, J. Am. Chem. Soc., 76, 1929 (1954),
 P. Montijn, J. H. Van-Boon, L. Brandsma, J. F. Arens, Rec. trav. chim., 86, 15, 129 (1967).
- 6. G. Eglinton, M. C. Whiting, J. Chem. Soc., 1950, 3650.
- J. Blanc-Guenee, M. Duchon d'Engenteres, M. Mioegue, Bull. soc. chim. France, 1964, 603.