ДИЗЧИЧИЪ РРГРИЧИЪ ИГОИЧРР АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXIII, № 6, 1970

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.37+547.431.4

ИССЛЕДОВАНИЯ В ОБЛАСТИ СОЕДИНЕНИИ АЦЕТИЛЕНОВОГО РЯДА

VIII. ПРИСОЕДИНЕНИЕ АЛКИЛХЛОРМЕТИЛОВЫХ ЭФИРОВ К БУТИН-2-ИЛАЛКИЛОВЫМ ЭФИРАМ. СИНТЕЗ 1-АЛКОКСИ-2-АЛКОКСИМЕТИЛ-3-ХЛОРБУТЕНОВ-2

Э. Е. КАПЛАНЯН, А. В. АРУТЮНЯН и Г. М. МКРЯН

Всесоюзный научно-исследовательский и проектный институт полимерных продуктов

Поступило 14 XI 1969

Осуществлена реакция присоединений алкилхлорметиловых эфиров к бутин-2-илалкиловым эфирам в присутствии хлористого цинка. В результате получены 1-алкокси-2алкоксиметил-3-хлорбутены-2.

На примере 1-этокси-2-этоксиметил-3-хлорбутена-2 показана возможность получения указанных диэфиров присоединением алкилхлорметиловых эфиров к алкил-3-хлорбутен-2-1-алкокси-2-алкоксиметил-3,3-дихлорбутанов. Для получения 1-алкокси-2-алкоксиметил-3-хлорбутенов-2 из указанных способов предпочтителен первый.

Табл. 1, библ. ссылок 4.

Было показано, что алкилхлорметиловые эфиры в присутствии хлористого цинка легко присоединяются как к однозамещенным [1], так и к двузамещенным [2] ацетиленовым углеводородам, образуя соответственно 1-алкокси-3-хлор- и 1-алкокси-3-хлор-2-алкилалкены-2. Для осуществления этой реакции разработаны условия, при которых потекание побочных реакций—присоединение второй молекулы алкилхлорметилового эфира к продуктам конденсации и замещение алкоксильных групп хлором, сведено к минимуму.

В данной работе осуществлено присоединение алкилхлорметиловых эфиров к бутин-2-илалкиловым эфирам.

Установлено, что бутин-2-илалкиловые эфиры при температуре $0 \leftarrow -5^{\circ}$ в течение 6 часов в присутствии хлористого цинка присоединяют алкилхлорметиловые эфиры с образованием 1-алкокси-2-алкоксиметил-3-хлорбутенов-2 с выходами 53—72%.

На примере получения 1-этокси-2-этоксиметил-3-хлорбутена-2 показана также возможность синтеза 1-алкокси-2-алкоксиметил-3-хлорбутенов-2, исходя из эфиров, являющихся исходными для получения бутин-2-илал-киловых эфиров по схеме:

Сравнительно лучшие результаты присоединения хлорметилэтилового эфира к 1-этокси-3-хлорбутену-2 получены проведением реакции при комнатной температуре в течение 24 часов. В этих условиях образуются 1-этокси-2-этоксиметил-3,3-дихлорбутан (23,9%), некоторое количество (2,3%) продукта его дегидрохлорирования—1-этокси-2-этоксиметил-3-хлорбутена-2 и 1,3-дихлорбутен-2 (29,4%). Последний является (аналогично ранее изученному примеру [1]) продуктом замещения этоксильной группы хлором в исходном 1-этокси-3-хлорбутене-2 под действием хлористого водорода в присутствии хлористого цинка.

Процесс присоединения алкилхлорметилового эфиров к 1-этокси-3-хлорбутену-2 при комнатной температуре сопровождается слабым выделением хлористого водорода и значительным осмолением. При более низких температурах реакция идет медленнее.

Отщеплением одной молекулы хлористого водорода от 1-этокси-2этоксиметил-3,3-дихлорбутана действием спиртового раствора едкого кали с выходом 80% получен 1-этокси-2-этоксиметил-3-хлорбутен-2, идентичный продукту присоединения этилхлорметилового эфира к этилбутин-2-ильному эфиру.

Учитывая лучшие выходы алкилбутиниловых эфиров [3] и продуктов их конденсации с алкилхлорметиловыми эфирами, первому пути получения 1-алкокси-2-алкоксиметил-3-хлорбутенов-2 следует дать предпочтение.

Дегидрохлорирование 1-алкокси-2-алкоксиметил-3-хлорбутена-2 действием спиртового раствора едкого кали привело к 4-алкокси-3-алкоксиметилбутадиенам-1,2 и продуктам их расщепления—2-алкоксиметилбутен-1-инам-3, о которых будет сообщено отдельно.

Экспериментальная часть

1-Алкокси-2-алкоксиметил-3-хлорбутены-2. К 0,5 моля алкилбутин-2-илового эфира, охлажденного до —5 → 10°, в присутствии 3 г безводного хлористого цинка при перемешиванни по каплям прибавляли 0,625 моля соответствующего алкилхлорметилового эфира при 0 → 5° в течение 2 часов. После окончания интенсивной реакции смесь перемешивали при той же температуре еще 4 часа. К смеси прибавляли воду и подвергали перегонке с водяным паром. Отогнавшееся масло отделяли, высушивали сернокислым магнием и фракционировкой выделяли соответствующие 1-алкокси-2-алкоксиметил-3-хлорбутены-2 (см. табл.).

Таблица

-	1	0/0	POE SU	0	= 111		MRD		Анализ Cl, º/o	
R	R'	ыход,	Молеку- лярная фор- мула	Т. кип., °С/ж.к	п ²⁰	_ d ₄ ²⁰	найдено	вычис-	найдено	лено
300		m	7 1-117	05 17 m			H	ВІ	H	38
CH ₃	CH ₃	53,3	C ₇ H ₁₃ CIO ₃	80-82/20	1,4580	1,0578	42,29	42,21	21,20	21,50
CH ₃	C ₂ H ₅	56,7	CaH15CIO	92-93/20	1,4568	1,0399	46,67	46,83	19,65	19,88
CH,	C ₃ H ₇	57,1	C ₉ H ₂₇ CIO ₂	103—105/21	1,4552	1,0118	51,63	51,45	18,17	18,40
СНа	C ₄ H ₉	58,8	C10H19CIO2	113—115/17	1,4550	0,9929	56,39	56,06	17,08	17,17
C ₂ H ₅	C ₂ H ₅	72,4	C ₉ H ₁₇ CIO ₂	9799/20	1,4561	1,0230	51,12	51,44	18,00	18,30
C ₂ H ₅	C ₃ H ₇	69,2	C10H19C1O2	105—107/17,5	1,4520	0,9906	56,05	56,06	16,97	17,20
C ₂ H ₅	C ₄ H ₉	66,8	C11H21CIO2	83—85/3	1,4540	0,9792	60,74	60,68	15,80	16,09
C ₂ H ₇	C ₃ H ₇	68,2	C,1H21C1O2	93-95/3	1,4550	0,9898	60,38	60,68	16,25	16,09
C ₃ H ₇	C ₄ H,	61,5	C12H23C1O2	93—95/2	1,4555	0,9646	65,232	65,302	15,39	15,11
C ₄ H ₉	C ₄ H _e	63,9	C ₁₃ H ₂₅ ClO ₂	98-100/0.5	1,4548	0,9590	10,13	69,92	13,97	14,28
]		

^{*} Все эфиры получены впервые.

По данным ГЖХ (хроматограф ЛХМ-7А, детектор-катарометр, колонка 3 м, 10% эпизона и 10% твина на хромосорбе W, 160—175°, гелий 60 мл/мин), все синтезированные 1-алкокси-2-алкоксиметил-3-хлорбутены-2 являются индивидуальными веществами.

Процесс сопровождается образованием смолистых продуктов (10—15%). Например, из 49 г этилбутин-2-илового эфира и 59,1 г этилхлорметилового эфира в присутствии 3 г безводного хлористого цинка получили 69,7 г (72,4%) 1-этокси-2-этоксиметил-3-хлорбутена-2; т. кип. 97—99° (20 мм); d²⁰ 1,0230; п²⁰ 1,4561. Выделили также 3,3 г исходного этилбутил-2-илового эфира (т. кип. 115—117°/680 мм; п²⁰ 1,4260) и 11 г смолистого продукта. Окисление 1-этокси-2-этоксиметил-3-хлорбутена-2 марганцевокислым калием привело к уксусной кислоте; т. кип. 114—116°/680 мм; п²⁰ 1,3750 и 1,3-диэтоксипропанолу-2, т. кип.

was:

105/35 мм, семикарбазон, т. пл. 89—90° (в лит. [4], т. кип. 105—105,5°/35 мм; т. пл. семикарбазона 90—91°).

1-Этокси-2-этоксиметил-3,3-дихлорбутан. К 67,25 г 1-этокси-3-хлорбутена-2 в присутствии 2 г безводного хлористого цинка при комнатной температуре прибавили 59,1 г этилхлорметилового эфира и перемешивали в течение 24 часов (во время опыта наблюдается слабое выделение хлористого водорода). Смесь подвергали перегонке с водяным паром (в колбе остается около 10 г смолистых продуктов). Отогнавшееся масло отделили (85,2 г), высушили сернокислым магнием и фракционированием выделили 41,6 г вещества, кипящего при 122-140°/680 мм, содержащего, согласно хроматографическому анализу, 44% (18,3 г) 1,3-дихлорбутена-2 и 56% (23,3 г) исходного 1-этокси-3-хлорбутена-2. Выделили также 2,2 г (2,3%) 1-этокси-2-этоксиметил-3-хлорбутена-2, т. кип. 76-78°/5 мм, 97-99°/20 мм; d20 1,0202; n20 1,4540 (согласно ГЖХ, идентичен с 1-этокси-2-этоксиметил-3-хлорбутеном-2, полученным вышеуказанным путем) и 27,4 г (23,9%) 1-этокси-2-этоксиметил-3,3-ди-хлорбутена, т. кип. $82-84^\circ/5$ мм; d^{20} 1,0760; n_D^{∞} 1,4478; MRD найдено 56,82, вычислено 56,78; найдено %: С1 30,68. С. Н. вС1, О. Вычислено %: СІ 31,0. Согласно ГЖХ, 1-этокси-2-этоксиметил-3,3-дихлорбутен является индивидуальным соединением.

Дегидрохлорирование 1-этокси-2-этоксиметил-3,3-дихлорбутана. Смесь 18,8 г 1-этокси-2-этоксиметил-3,3-дихлорбутана, 5,7 г едкого кали, 5,7 г этилового спирта при нагревании на кипящей водяной бане перемешивали в течение 5 часов. После обычной обработки реакционной смеси фракционированием выделили 127 г (80,3%) 1-этокси-2-этоксиметил-3-хлорбутена-2, т. кип. 97—99°/20 мм; d²⁰ 1,0202; п²⁰ 1,4540; МR_D найдено 51,11, вычислено 51,44. Согласно данным ГЖХ, полученное вещество является индивидуальным и идентично 1-этокси-2-этоксиметил-3-хлорбутену-2, полученному вышеуказанным способом.

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՑԵՏԻԼԵՆԱՅԻՆ ՇԱՐՔԻ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

VIII. የበትՏԻՆ-2–ՒԼԱԼԿԻԼ ԵԹԵՐՆԵՐԻՆ ԱԼԿԻԼՔԼՈՐՄԵԹԻԼ ԵԹԵՐՆԵՐԻ ՄԻԱՑՈՒՄ. 1–ԱԼԿՕՔՍՒ-2–ԱԼԿՕՔՍԻՄԵԹԻԼ-3–ՔԼՈՐԲՈՒՏԵՆ-2–ՆԵՐԻ ՍԻՆԹԵՋ

է. Ե. ՂԱՓԼԱՆՑԱՆ, Ա. Վ. ՀԱՐՈՒԹՑՈՒՆՑԱՆ և Գ. Մ. ՄԿՐՑԱՆ

Ամփոփում

Իրականացված է բուտին-2-իլալկիիլ եԹերներին ցինկի քլորիդի ներկայու-Թյամբ ալկիլքլորմեԹիլ եԹերների միացումը և ստացված են 1-ալկօքսի-2--ալկօքսիմեԹիլ-3-քլորբուտեն-2-ներ (53—72% ելքերով)։

1-Էթօքսի-2-էթօքսիմեթիլ-3-քլորբուտեն-2-ի ստացման օրինակի վրա ցույց է տրված նշված եթերների ստացման Տնարավորությունը՝ ալկիլքլորմեթիլ եթերների ալկիլ-3-ջլորբուտեն-2-ներին միացնելով և ստացված 1-ալկօջսի-2-ալկօջսիմեթիլ-3,3-դիջլորբուտանների հետագա դեհիդրոջլորումով։

1-Ալկօբսի-2-ալկօբսիմենիլ-3-գլորթուտեն-2-ների ստացման նշված եղանակներից զգալի առավելունյուն ունի առաջինը։

ЛИТЕРАТУРА

- 1. Г. М. Мкрян, С. М. Гаспарян, Э. А. Волнина, Э. Е. Капланян, Арм. хим. ж. (в печати).
- 2. Г. М. Мкрян, Э. Е. Капланян, Арм. хим. ж. (в печати).
- 3. Г. М. Мкрян, Изв. АН АрыССР, ФМЕТН, 1, 259 (1948).
- 4. H. R. Henze, B. G. Rogers, J. Am. Chem. Soc., 61, 433 (1939).