XXIII, № 5, 1970

УДК 542.91+547.415.1

исследования в области производных аминов

XVII. НЕКОТОРЫЕ N-ФЕНИЛ-N-n- АЛКОКСИФЕНИЛ-N,'N'-ДИАЛКИЛ-ЭТИЛЕНДИАМИНЫ

О. Л. МНДЖОЯН, А. С. КАЗАРЯН, С. Н. АСРАТЯН и Е. Г. ДЖАМПОЛАДЯН

Институт тонкой органической химии АН Армянской ССР

Поступило 18 I 1968

Осуществлен синтез N-п-алкоксифенил-N-фенил-N',N'-диметил- и- диэтилэтилендиаминов взаимодействием *п*-алкоксидифениламинов с соответствующими β-диалкиламиноэтилхлоридами.

Фармакологические исследования показали, что эти соединения имеют антигистаминную активность и вмесге с тем обладают местноанестезирующими свойствами, причем эта активность максимальна в случае N-фенил-N-л-изопропоксифенил-N', N'-диметилэтилендиамина.

Табл. 4, библ. ссылок 5.

Известные антигистаминные соединения, применяемые в медиципской практике, принадлежат к различным классам органических соединений, в том числе и к производным этаноламина и этилендиамина.

В зависимости от природы заместителей у азотов или кислорода в некоторых случаях соединения приобретают совершенно новые биологические свойства—холинолитические, спазмолитические, противосудорожные, анестетические и другие.

Это обстоятельство явилось причиной поисков новых производных этаноламина и этилендиамина. Была проверена необходимость наличия бензильной группы в молекуле антергана I; для этого бензильная группа была заменена фенильной II.

Как показали фармакологические испытания, N,N-дифенил N'N'—диметилэтилендиамин практически лишен антигистаминной активности.

Для изучения влияния алкоксильной группы осуществлен синтез N-фенил-N-n-алкоксифенил-N',N'-диалкилэтилендиаминов следующего строения:

где $R = CH_3 - C_5H_{11}$, включая изо-радикалы; $R' = CH_3$, C_2H_5 .

Синтез этих соединений осуществлен взаимодействием *п*-алкоксидифениламинов с β-диалкиламиноэтилхлоридами в присутствии амида натрия или едкого натра (см. табл. 2 и 3); выходы конечных продуктов в обоих случаях отличаются друг от друга незначительно.

п-Алкоксидифениламины были получены алкилированием *п*-оксидифениламина алкилгалогенидами в присутствии едкого кали.

Определялась основность п-алкоксифениламинов и тетразамещенных этилендиаминов в 50%-ных водноспиртовых растворах этих соединений (см. табл. 4). Как и следовало ожидать, дифениламин является более слабым основанием, чем п-алкоксидифениламины. С увеличением алкильного радикала алкоксильной группы основность увеличивается. Эти амины при комнатной температуре в абсолютном эфире с хлористым водородом образуют гидрохлориды, однако в таких же условиях четвертичные аммониевые соли с йодистым метилом не образуются.

При измерении рН 5%-ного водноспиртового раствора N-фенил-N-л-алкоксифенил-N',N'-диалкилэтилендиаминов было установлено, что основность у них больше, чем у соответствующих л-алкоксидифениламинов. Однако в данном случае отмечается некоторое снижение основности при удлинении алкильного радикала алкоксильной группы.

Установлено, что N-фенил-N-п-алкоксифенил-N',N'-дналкилэтилендиамины в различных растворителях (эфир, этанол, ацетон) и при повышенных температурах образуют только моногидрохлориды и монойодметилаты. Таким образом, при переходе от п-алкоксидифениламинов к соответствующим диалкилэтилендиаминам основность снижается.

Фармакологические исследования показали, что монохлористоводородные соли всех перечисленных диаминов в той или иной степени обладают антигистаминной активностью.

Среди этих препаратов гидрохлорид N-n-пропоксифенил-N-фенил-N',N'-диэтилэтилендиамина является наиболее активным; на изолированном отрезке тонкой кишки морской свинки препарат в разведении 1×10^{-6} полностью предотвращает спазм, вызванный гистамином и имеет приблизительно такую же активность, что и антегран.

Исследование терминальной анестезни препаратов проводилось на роговице глаза кролика по методике Ренье, а проводниковой—на седалищном нерве лягушки.

Выяснилось, что все соединения обладают как терминальной, так и проводниковой анестетической активностью в различной степени. Наибольшую терминально-анестетическую активность проявляют клористоводородные соли N-n-этоксифенил-N-фенил-N',N-диметилэтилендиамина и N-n-изопропоксифенил-N-фенил-N',N'-диметилэтилендиамина.

Анестезирующий эффект от 0,5%-ного раствора препаратов выражается в 680—800 ед. Ренье, а от 1%-ного раствора—1100—1150 ед. Ренье, что несколько превосходит эффект, получаемый от дикаина.

Однако при больших концентрациях (1%-ный раствор) в начале инстилляции наблюдается гиперемия, слезоточивость.

В отношение проводниковой анестезии хлористоводородные соли N-n-изобутоксифенил-N-фенил-N', N'-диэтилэтилендиамина и N-n-изопропоксифенил-N-фенил-N', N'-диэтилэтилендиамина в концентрации 0,1%-ного раствора действуют более продолжительно (50—60 минут), чем остальные соединения.

R	Выход, 0/0	Т. пл., °С т. кип., °С/мм	Молекулярная формула	Т. пл. гидрохло- ридов, °С
н	-	80—82	C ₁₂ H ₁₁ NO	158—159
CH ₂	62,0	98—100	C ₁₃ H ₁₃ NO	117—118
C ₂ H ₅	66,4	7273	C ₁₄ H ₁₅ NO	148 149
C ₃ H ₇	62,0	60-62	C15H17NO	120-121
изо-С ₃ Н ₇	87,7	85-87	C15H17NO	235-237
C ₄ H ₉	71,5	4546	C ₁₆ H ₁₉ NO	111—112
изо-С4Н,	70,9	60-61	C ₁₆ H ₁₉ NO	105 —107
C ₅ H ₁₁	71,8	187—192/3	C ₁₇ H ₂₁ NO	281—283
изо-С _в Н ₁₁	76,8	215220/3	C ₁₇ H ₂₁ NO	85—87
	-			

Таблица 1

-	ETF?	A	н а	л и	3,	0/0				
C		F	1	ı	I	СІ (в гидрохлоридах				
вычис-	лено на илено		найдено	вычис- лено	найдено	вычис-	найдено			
77,84	78,03	5,94	6,60	7,50	7,90	16,01	16,25			
78,40	78,02	6,53	6,21	7,03	6,87	15,56	15,70			
78,88	79,15	7,03	6,95	6,56	6,74	14,20	14,70			
79,26	79,40	7,54	7,55	6,16	6,06	13,51	13,95			
79,26	79,30	7,54	7,56	6,16	6,12	13,51	13,86			
79,63	79,72	7,94	8,10	5,80	5,67	12,83	13,08			
79,63	78,09	7,94	7,90	5,80	5,48	12,83	13,24			
79,96	80,33	8,29	7,94	5,49	5,82	11,80	11,50			
79,96	79,72	8,29	8,05	5,49	5,81	11,80	12,10			

			Молекулярная формула	n _D ²⁰	d ₄ ²⁰	MRD		Анализ, 0/0							Т. ил. солей, °С		
R	%	Т				вычислено		C		Н		N		Сі (в гидрохл.)			
		Т. кип., °С/ <i>мм</i>					вычис-	найдено	вычис-	найдено	вычис-	найдено	вычис- лено	найдено	гидро- хлоридон	йодмети- латов	
Н	46,0	145—150/4	C16H20N2	1,6203	1,2660	76,766	75,283	79,68	79,60	8,32	8,88	11,65	11,7	12,83	12,45	163 - 165	165 — 167
CH3O	28,0	190-191/4	C17H22N2O	1,5868	1,0595	83,027	85,613	75,55	75,32	8,15	8,60	10,37	11,48	11,57	11,13	188—190	135-137
C ₂ H ₅ O	46,0	189—191/4	C18H24N2O	1,5818	1,0455	87,645	87,131	76,05	76,06	8,48	8,26	9,85	9,70	11,07	11,20	196 - 197	96-97
C ₃ H ₇ O	38,2	185—188/4	C19H26N2O	1,5873	1,0558	92,263	93,444	76,52	77,82	8,71	8,32	9,38	9,75	10,60	10,53	136-138	135—137
изо-C ₃ H ₇ O	42,9	185—187/4	C19H26N2O	1,5865	1,0549	92,263	93,431	76,52	76,69	8,71	8,46	9,38	8,87	10,60	10,33	169-171	141-142
C ₄ H _• O	64,67	195—198/4	C20H28N2O	1,5832	1,1710	96,884	94,566	77,29	77,05	9,29	9,20	9,29	9,4	10,18	9,33	249 -250	152-154
изо-С4Н.О	43,8	197-200/4	C20H28N3O	1,5804	1,0423	96,884	95,541	77,29	77,71	9,29	9,33	9,29	9,33	10,18	9,55	162-163	153-154
C ₅ H ₁₁ O	44,4	205-207/4	C21H30N2O	1,5841	1,0291	101,499	105,143	77,31	77,08	9,19	8,82	8,58	9,19	9,79	9,42		188-189
изо-С ₆ Н ₁₁ О	43,2	215—217/4	C ₂₁ H ₃₀ N ₂ O	1,5832	1,0301	101,499	105,730	77,31	77,14	9,19	9,44	8,58	8,95	9,79	9,56	174—176	181—183

^{*} В кристаллическом состоянии выделить не удалось.

RO-C

2 (2.1)						MF	
R	Buxoa, 0/0	Т. кип., [©] С/ <i>мм</i>	Молекулярная формула ,	n ²⁰	d ²⁰	вычислено	
CH,	22,4	182—184/3	C10H26ON2	1,5722	1,0248	92,263	
C ₂ H ₅	53,5	190—195/3	C20H28ON2	1,5569	1,0104	96,884	
C ₃ H ₇	19,5	202-204/3	C21H30ON2	1,5634	1,0144	101,499	
изо-С,Н,	40,0	192-194/1	CatHaoONa	1,5601	1,0015	101,499	
C ₄ H ₉	50,0	213-217/3	C ₂₂ H ₂₃ ON ₂	1,5589	1,0037	106,117	
изо-С4Н,	63,8	210215/3	C22H22ON2	1,5568	1,0056	106,117	
C ₅ H ₁₁	45,5	219-221/3	C23H24ON2	1,5572	1,0058	110,735	
изо-С ₅ Н ₁₁	28,4	223-225/3	C23H34ON2	1,5570	1,0057	110,735	

NCH2CH2N(C3H3)3

D	- 7-	Анализ, %/о						Т. пл. со	лей, °С	
	С		H			V	CI (B F	ндрохл.)		
онативн	вычис-	найдено	вычис-	найдено	вычис- лено	найдено	вычис-	найлено	гндро- хлоридов	йодмети- латов
94,903	76,50	76,22	8,72	8,63	9,39	9,06	10,61	10,70	66-68	105-107
98,463	76,92	77 ,23	8,97	9,03	8,97	9,15	10,10	10,34	139—141	115 -117
100,684	77,30	77,59	9,20	9,13	8,59	8,35	9,78	10,07	139—140	85 87
104,057	77,30	77,96	9,20	9,37	8,59	8,37	9,78	10,19	122-124	113 – 115
109,964	77,65	77,76	9,44	9,39	8,23	8,85	9,13	12,21	95 97	82-84
109,695	77,65	78,15	9,44	9,87	8,23	8,62	9,13	10,53	152-53	6870
113,506	77,91	77,42	9,35	9,01	7,90	8,10	8,86	9,58	88-91	7980
113,241	77,91	77,56	9,35	9,60	7,90	7,64	8,86	9,68	127—128	91-92

Таблица 4
Значение рН 5%-ного водноспиртового раствора л-алкоксидифениламинов и N-фенил-N-л-алкоксифенил-N'.N'-диметилэтилендиаминов

Обезболнвающее действие этих препаратов примерно равно действию новокаиня. В серии опытов с хлористым барием было установлено, что эти соединения в разведении 1×10^{-7} и 1×10^{-6} не обладают спазмолитическим действием. В тех же концентрациях не влияют на периферические М-холинореактивные структуры, хотя и в отдельных случаях выявляется их слабый Н-холинолитический эффект. Аналогичные результаты наблюдаются при изучении влияния препаратов на дентральные Мп и Н-холинореактивные системы. Эти соединения в дозе 50 мг/кг (мышам подкожно) не предупреждают гиперкинез, вызванный ареколином, но несколько уменьшают никотиновые судороги.

Монойодметилаты вышеуказанных диаминов лишены как антигистаминной, так и внестетической активности.

По данным фармакологических испытаний, с заменой бензильного радикала в антергане фенильным снижается антигистаминная активность. Введение метоксильной группы в пара-положение фенильного радикала еще больше снижает эту активность, однако с увеличением алкильного радикала алкоксильной группы активность снова возрастает и доходит до своего максимума в случае N-n-пропоксифенил-N-фенил-N',N'-диэтилэтилендиамина.

Аналогичная картина наблюдается и при рассмотрении анестетической активности этих препаратов. При замене в антергане бензильного остатка фенильным терминальная анестезия увеличивается, введение алкоксильной группы в виде метоксильной вызывает снижение, однако в случае этоксильной наблюдается повышение.

Новые производные этилендиамина можно отнести к анестетикам, т. е. подобная структура специфична больше для анестезии, чем для антигистаминного действия. Наиболее активным соединением является N-n-изопропокси-N-фенил-N'N'-диметилэтилендиамин.

Экспериментальная часть

п-Пропоксидифениламин. 74 г (0,39 моля) п-оксидифениламина смешивают с раствором 36 г (0,64 моля) едкого кали в 324 мл абсолютного этилового спирта. Перемешивают в течение 45 минут при комнатной температуре и затем прикапывают 48 г (0,39 моля) бромистого пропила. Смесь нагревают на кипящей водяной бане в течение 3—4 часов, охлаждают до комнатной температуры, разбавляют 1,5 л ледяной воды и подкисляют 30%-ной соляной кислотой до рН = 4. При охлаждении ледяной водой вещество выпадаєт в осадок; его отфильтровывают и перекристаллизовывают из 250 мл этилового спирта, применив активированный уголь. После высушивания выход продукта коричневого цвета составляет 55,6 г (96,2%); т. пл. 40—42°. Остальные п-алкоксидифениламины были полуечны аналогично (табл. 1).

N-Фенил-N-п-бутоксифенил-N',N'-диметилэтилендиамин. а) Получение с помощью амида натрия. В 200 мл жидкого аммиака вносят 0,1 г нитрата трехвалентного железа. К образовавшемуся желтому раствору в течение 30 минут прибавляют кусками 2 г (0,087 г-ат) натрия, продолжают перемешивание в течение 30 минут (температура в колбе—15—20°). При этой же температуре прибавляют 15 г (0,062 моля) п-бутоксидифениламина с т. пл. 45—46°, через 40 минут, продолжая перемешивание при комнатной температуре (причем температура в колбе повышается до 10—15°), добавляют 6,66 г (0,062 моля) свежеперегнанного β-диметиламиноэтилхлорида в 25 мл абсолютного толуола. Смесь нагревают при 100—150° в течение 6—8 часов, охлаждают, прибавляют 80 мл воды, экстрагируют эфиром, сушат над сульфатом натрия, отгоняют эфир и остаток перегоняют в вакууме. Выход продукта с т. кип. 184—189° /1,5 мм 12 г (64,64%).

б). Получение с помощью едкого натра. Смесь 15 г (0,62 моля) портоксидифениламина, 4 г (0,1 моля) едкого натра, 8,93 г солянокислого волиметиламиноэтилхлорида и 25 мл безводного толуола помещают в колбу, присоединенную к водоотделителю, и нагревают при 140—150° при перемешивании в течение 6—8 часов. После охлаждения обработку осуществляют, как описано выше. Выход продукта с т. кип. 185—189° /1,5 мм 11 г. (56,6%) (табл. 2 и 3).

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԱԾԱՆՑՑԱԼՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

XVII. N-\$bbbl-N- $-\mu$ -LL404Ub\$bbbl-N',N'_-PblL4bl\pbbbbl-bbb

Հ. Լ. ՄՆՋՈՑԱՆ, Ա. Ա. ԿԱԶԱՐՑԱՆ, Ս. Ն. ՀԱՍՐԱԹՑԱՆ և Ե. Գ. ՋԱՄՊՈԼԱԳՏԱՆ

Luhnhniu

պ-Ալկօքսիդիֆենիլամինների ու β-դիալկիլամինաէβիլքլորիդների փոխազդմամբ սինβեզնլ ենք Համապատասխան N-ֆենիլ-պ-ալկօքսիֆենիլ-N, N -դիալկիլէβիլենդիամիններ։ Իբրև կոնդենսող ագենտ օգտագորժել ենք նատրիումի ամիդը կամ նատրիումի հիղրօքսիդը։ Ստացվող դիամինների ելքերը հրկու դնպքում էլ շատ քիչ են տարբերվում իրարից։ Այդ պատճառով էլ տոտվելապես գերադասելի է նատրիումի ամիդի փոխարինումը նատրիումի հիղրօքսիդով։

Դիֆենիլամինի ոհակցիոնունակությունը մեծանում է ալկօքսի խմբի ալկիլային ռադիկալի մեծացման հետ զուդընթաց։ Ալկիլռադիկալների փոփոխու-Սյունից կախված N-ֆենիլ- N-պ-ալկօքսիֆենիլ-N,՝N՝- դիալկիլէթիլենդիա-

մինների pH փոփոխությունն աննշան է։

Սինթեզված դիամիններից պատրաստել ենք մոնոհիդրոքլորիդներ և մոնոյոդմեթիլատներ։ Նրանց ֆարմակոլոդիական ուսումնասիրությունների տվյալներով ստացված միացությունները զուրկ չեն անտիհիստամինային ակտիվությունից և օժտված են տեղական թմրեցում առաջացնելու ընդունակությամբ։

Ակտիվությունն ընդունում է տարբեր արժեքներ և հասնում է առավելագույնին N-ֆենիլ -N-պ-իզոպրոպօքսիֆենիլ -N',N'- դիմեթիլէթիլենդիամինի մոտ։

ЛИТЕРАТУРА

- 1. B. N. Halpern, Arch. Intern. Pharmacodyn., 68, 339 (1942).
- 2. R. Nillstatter, H. Kubli, Ber., 42, 4138 (1909).
- 3. P. Jacobson, F. Henrich, J. Klein, Ber., 26, 696 (1893).
- 4. D. F. Houston, J. Am. Chem. Soc., 71, 395 (1949).
- 5. M. Philip, A. Cahn, Ber., 17, 2435 (1884).