XXIII, № 4, 1970

УДК 542.91+547.461.4

ИССЛЕДОВАНИЯ В ОБЛАСТИ СИНТЕЗА ПРОИЗВОДНЫХ ДВУХОСНОВНЫХ КАРБОНОВЫХ КИСЛОТ

ХХХІІ. *п*-АЛҚОҚСИФЕНИЛСУКЦИНИМИДЫ

С. А. АВЕТИСЯН и О. Л. МНДЖОЯН

Институт тонкой органической химии АН Армянской ССР

Поступило 28 III 1969

Из трех проверенных методов получения *п*-алкоксибензальдегидов наилучшим общим способом является алкилирование *п*-оксибензальдегида. Присоединение цианистово водорода к двойной связи *п*-оксибензилиденмалонатов сопровождается побочными реакциями. Омылением продуктов присоединения образуются *п*-алкоксифенилянтарные кислоты, которые через ангидриды превращаются в сукцинамовые кислоты, а последние при нагревании циклизуются в сукцинимиды. Наблюдаются чередование температур плавления *п*-алкоксифенилсукцинимидов с повышением при четном числе углеродных атомов, алкильного радикала отличия в ИК спектрах и противосудорожной активности. Табл. 5, библ. ссылок 19.

В настоящем сообщении описан синтез некоторых *п*-алкоксифенилсукцинимидов строения:

где $R = CH_3 - C_8H_{17}$, изо- C_3H_7 — изо- C_5H_{11} .

Работа является продолжением ранее опубликованного исследования [1], начатого с целью получения новых противосудорожных препаратов, избирательно действующих на различные экспериментальные модели судорожного состояния. Синтез этих сое́динений был осуществлен по следующей общей схеме:

$$n$$
-ROC₆H₄CHO + CH₂(COOC₂H₅)₂ $\xrightarrow{\text{пвперизин, (CH3CO)3O}}$
 $\rightarrow n$ -ROC₆H₄CH=C(COOC₂H₅)₂ $\xrightarrow{\text{HCN, KOH, HCI}}$ n -ROC₆H₄CHCOOH

 $\rightarrow n$ -ROC₆H₄CH—CO

 $\rightarrow n$ -ROC₆H₄CH—CO

 $\rightarrow n$ -ROC₆H₄CH—CO

 $\rightarrow n$ -ROC₆H₄CH—CO

$$n\text{-ROC}_6\text{H}_4\text{CH}-\text{COONH}_4$$
 $C\text{H}_2-\text{CONH}_2$
 $n\text{-ROC}_6\text{H}_4\text{CH}-\text{CONH}_2$
 $C\text{H}_2-\text{COONH}_4$
 $n\text{-ROC}_6\text{H}_4\text{CH}-\text{CONH}_2$
 $C\text{H}_2-\text{COONH}_4$
 $C\text{H}_2-\text{COOH}$
 $n\text{-ROC}_6\text{H}_4\text{CH}-\text{CONH}_2$
 $C\text{H}_2-\text{COOH}$
 $C\text{H}_2-\text{COOH}$

Для получения исходных *п*-алкоксибензальдегидов были проверены три известных метода:

1. Из алкоксибензолов через п-алкоксибензилхлориды:

$$ROC_6H_5 \xrightarrow{CH_5O. HCI} n-ROC_6H_4CH_2CI \xrightarrow{C_6H_{18}N_6} n-ROC_6H_4CHO.$$

Для низкокипящих алкоксибензолов реакция хлорметилирования без катализаторов [2, 3], а также дальнейшее превращение их в соответствующие альдегиды с помощью гексаметилентетрамина протекает с удовлетворительными выходами [4, 5]. Однако, как показали наши опыты, с удлинением алкильного радикала выходы п-алкоксибензилхлоридов сильно снижаются, достигая в случае гексилоксибензола 10—15%. Применение безводного хлористого цинка приводит к ряду побочных реакций, а количество основного продукта не увеличивается.

2. Формилирование п-алкоксибензолов:

$$ROC_6H_5$$
 $\xrightarrow{HCON(CH_3)_2, POCI_3}$ $n\text{-ROC}_6H_4CHO.$

По литературным данным, формилирование алкоксибензолов диметилформамидом с помощью хлорокиси фосфора проведено только с анизолом и фенэтолом (выход 30—40%) [6]. При формилировании следующих членов гомологического ряда было установлено, что с удлинением алкильного радикала выход альдегидов постепенно снижается в интервале от 40 (при R=CH₃) до 6% (при R изо-C₅H₁₁). Наряду с оснозным продуктом реакции выделяется также исходный алкоксибензол.

3. Алкилирование п-оксибензальдегида

осуществлялось несколькими способами, отличающимися друг от друга характером как применяемого растворителя, так и конденсирующего щелочного агента [7,8.9].

Наилучшие результаты получаются при применении натриевых алкоголятов, соответствующих используемому алкилгалогениду. Как видно из таблицы 1, в условиях реакции все альдегиды, кроме п-изобутоксибензальдегида, получаются с достаточно хорошими выходами. В других случаях, например, в циклогексаноне в присутствии углекислого калия выход гексилоксибензальдегида составляет 25%, а в циклогексаноле с едким кали—64% [10].

Установлено также, что как йодистый, так и бромистый изобутил в условиях этойреакции превращаются в изобутилен, т. е. конкурирующая реакция замещения подазляется отщеплением галоидоводорода в присутствии альдегидной группы. Так, при получении изобутоксибензола из фенола и бромистого изобутила в сильнощелочной среде подобисе отщепление галоидоводорода незначительно и выход изобутоксибензола достигает 80—84%. Для получения п-изобутоксибензальдегида лучшим исходным продуктом является n-изобутоксибензилхлорид.

Конденсация полученных альдегидов с малоновым эфиром велась по реакции Кневенагеля, как в присутствии каталитического количества пиперидина, так и действием уксусного ангидрида. Как показывают опыты, с изменением алкильного радикала алкоксильной

Армянский химический журнал, XXIII, 4-4

группы выходы продуктов реакции меняются с повышением при четном числе углеродных атомов в радикалах как нормального, так и изостроения.

Для проверки влияния соответствующей альдегиду кислоты проводился контрольный опыт с *п*-этоксибензальдегидом [12]. Перед использованием альдегид повторно обрабатывался бисульфитом натрия и после разложения перегонялся в вакууме в токе сухого азота. Выход *п*-этоксибензилиденмалоната при этом падал от 74,7 до 51,0%.

Имеется указание о необходимости добавления *п*-нитробензойной кислоты при конденсации *п*-нитробензальдегида, однако при работе с продажным *п*-нитробензальдегидом был получен *п*-нитробензилиденмалонат с 65—70% выходом, а с этиловым эфиром циануксусной кислоты—выход поридка 85,7%. Необходимость присутствия кислоты объясяяется катализирующей способностью солей пиперидина, что подтверждается успешным применением ацетата аммония как одного из лучших катализаторов конденсации.

п-Алкоксибензилиденмалонаты при перегонке в вакууме получались в виде маслообразных жидкостей с кристаллами.

В случае конденсации бензальдегида [14] в присутствии как пиперидина, так и уксусного ангидрида получались две фракции с большим интервалом точек кипения. Однако ни одна из фракций при долгом хранении не закристаллизовывалась.

Как показали данные хроматографического анализа, при присоединении цианистого водорода к *п*-алкоксибензилиденмалонатам под действием образовавшейся щелочи происходили:

- а) частичное омыление *п*-алкоксибензилиденмалонатов с образованием натриевых солей малоновых кислот, которые при обработке соляной кислотой превращались в малоновые кислоты, а затем отщеплением двуокиси углерода—в соответствующие β-замещенные акриловые кислоты. Последние оказались идентичными с побочными продуктами реакции присоединения;
- б) частичное омыление и декарбоксилирование продукта присоединения цианистого водорода с образованием β-циан-β-л-алкоксифенилпропионовых кислот, образование которых было доказано встречным синтезом и идентификацией;
- в) частичный гидролиз нитрилокислот до соответствующих амидокислот, которые сравнивались с амидокислотами, полученными при взамодействии ангидридов n-алкоксифенилянтарных кислот с аммиаком;
- г) выделение незначительного количества α -циан- α -n-алкоксифенилметилмалонатов, в то время как исходные n-алкоксибензилиденмалонаты не были обнаружены.

При омылении продуктов присоединения в щелочной среде были обнаружены *п*-алкоксибензилиденмалоновые, *п*-алкоксифенилакриловые и *п*-алкоксифенилянтарные кислоты, а также вещество неустановленного строения. Изучалась также реакция присоединения цианистого водорода к этиловому эфиру а-циан-β-фенилакриловой кислоты, полученному по методу Лапворза и Бекера [15]. Было установлено, что, наряду с образованием этилового эфира а,β-дициан-β-фенилпропионо-

вой кислоты, происходит также частичное омыление эфирной группы с образованием а-циан-3-фенилакриловой кислоты, гидролиз цианогруппы с образованием бензилиденмалоновой кислоты и гидролиз а,3-дициан-3-фенилпропионовой кислоты с образованием фенилсукцинамовой кислоты:

$$C_6H_5CH=C(CN)COOC_2H_5$$
 \xrightarrow{HCN} $C_6H_5CH=C(CN)COOH + C_6H_5CH=C(COOH)_2 + C_6H_5CH(CN)CH(CN)COOC_2H_5 + C_6H_5CH(CONH_2)CH_2COOH.$

Опыты показали, что можно провести присоединение цианистого водорода к свободной бензилиденмалоновой кислоте.

На хроматограмме смеси продуктов реакции и соответствующих соединений, полученных отдельно, проявляются в одной точке.

После омыления продуктов присоединения свободные кислоты очищались перекристаллизацией.

Большинство ангидридов, полученных из кислот и уксусного ангидрида или хлористого ацетила, представляют собой кристаллические вещества, плохо растворимые в эфире и разлагающиеся при перегонке. При взаимодействии с аммиаком они превращались в сукцинамовые кислоты, по-видимому, смесь 2- и 3-изомеров.

Для циклизации сукцинамовые кислоты подвергались нагреванию с одновременным удалением воды [16]. В реакционной смеси в указанных условиях частично остается непрореагировавшая амидокислота, которая легко удаляется перекристаллизацией.

Определение температур плавления сукцинимидов, однородность которых проверялась хроматографически как в тонком слое окиси алюминия, так и на силикагеле с двумя системами растворителей, по-казало чередование с повышением при четном числе углеродных атомов алкильного радикала алкоксильной группы.

Сукцинимиды подвергались ИК спектроскопированию Хажакяном и Дургарян. Найдено, что в кристаллическом состоянии сукцинимиды с нечетным числом углеродных атомов в алкоксильной группе отличаются наличием пика в области $3300\ cm^{-1}$. В растворах же в хлороформе или четыреххлористом углероде это отличие исчезает.

Исследования противосудорожной активности, проведенные Акопян и Герасимян, свидетельствуют о наличии заметного эффекта при судорогах, вызванных коразолом. У соединений с четным числом углеродных атомов в алкоксильной группе активность выше. Подробные данные фармакологических исследований будут опубликованы отдельно. Некоторые физико-химические константы полученных соединений приведены в таблицах 1—5.

Экспериментальная часть

п-Изобутоксибензальдегид. а) Из 99,25 г (0,5 моля) *п*-изобутоксибензилхлорида и 105,14 г (0,75 моля) гексаметилентетрамина в 200 мл

ледяной уксусной кислоты и 200 мл воды получено 120 г бисульфитного соединения, а затем 54 г ($60,6^{\circ}/_{\circ}$) свободного альдегида с т. кип. $162^{\circ}/4$ мм.

б) Из 75 г (0,5 моля) изобутоксибензола, 46,72 г (0,64 моля) диметилформамида и 66 г (0.62 моля) хлорокиси фосфора получено 9 г ($10^{\circ}/_{\circ}$) свободного альдегида с т. кип. $135^{\circ}/_{\circ}/_{\circ}$, жм, а также 46 г (0,3 моля)

изобутоксибензола.

в) Смесь алкоголята из 5,29 г (0,23 г-ат) натрия и 150 мл алканола, соответствующего алкилгалогениду, и 24,4 г (0,2 моля) n-оксибензальдегида нагревалась при 85° в течение одного часа; приливалось 0,4 моля йодистого алкила. Смесь кипятилась 12 часов, отфильтровывалась и спирт отгонялся при пониженном давлении. После добавления 70 мл воды, экстрагирования эфиром, высушивания сульфатом натрия растворитель отгонялся, остаток перегонялся в вакууме (табл. 1). В случае получения изобутоксибензальдегида при применении как йодистого, так и бромистого изобутила выделялся изобутилен. После обычной обработки и выделения 2 г n-изобутоксибензальдегида подкислением из водного остатка выделилось 6,3 г n-оксибензальдегида с т. пл. 114°.

Диэтиловые эфиры п-алкоксибензилиденмалоновых кислот [13]. Смесь 0,12 моля п-алкоксибензальдегида, 28,8 г (0,18 моля) диэтилового эфира малоновой кислоты и 2 г пиперидина нагревалась на кипящей водяной бане 7 часов. После добавления 50 мл воды, экстрагирования эфиром и высушивания сульфатом натрия эфир отгонялся, а остяток перегонялся в вакууме (табл. 2). Полукристаллические продукты отжимались на фильтре и перекристаллизовывались из петролейного эфира.

Диэтиловый эфир бензилиденмалоновой кислоты. а) Из 55,12 г (0,52 моля) бензальдегида, 83,2 г (0,52 моля) малонового эфира и 0,03 моля пиперидина получены: І фракция с т. кип. $75-100^\circ/1$ мм — 10 г (исходные продукты), ІІ фракция $154-175^\circ1/$ мм — 25 г, ІІІ фракция $174-175^\circ/1$ мм — 45 г, по литературным данным, т. кип. $188-92^\circ/13$ мм [17].

б) Из 53 г (0,5 моля) бензальдегида, 80 г (0,5 моля) малонового эфира и 0,75 моля уксусного ангидрида было получено: І фракция с т. кип. 90—130°/0,5мм—(исходные продукты), ІІ фракция 130—50°/0,5мм—

-81 г (64,8%), III фракция 150—162%,5мм — 19,6 г (15,2%).

Диэтиловый эфир п-нитробензилиденмалоновой кислоты. Из 15,1 г (0,1 моля) продажного п-нитробензальдегида, 16 г (0,1 моля) малонового эфира и 0,54 г пиперидина было получено 20 г (70%) кристаллического вещества, плавящегося после перекристаллизации из этанола при 94°. По литературным данным, т. пл. 93—94° [11]. Из 30,2 г (0,2 моля) продажного п-нитробензальдегида, 22,6 г (0,2 моля) этилцианацетата и 0,3 моля уксусного ангидрида получено 42,2 г (85,7%) кристаллического продукта, плавящегося после перекристаллизации из этанола при 162°.

	- 1				
R	°С/ мм		Молекулярная формула	n ²⁰	
CH ₃	82,0	105/3	C ₈ H ₈ O ₂	1,5711	
C ₂ H ₅	84,3	119-123/1	C,H10O,	1,5478	
C ₃ H ₇	80,0	130 -133/1	C10H12O2	1,5508	
изо-С ₃ Н ₇	80,0	104-110/1	C10H12O1	1,5449	
C ₄ H ₉	80,0	119/3	C11H14O2	1,5405	
изо-С ₄ Н ₉	7,0	130-135/1	C11H14O2	1,5330	
C ₅ H ₁₁	84,0	137-140/1	C12H10O3	1,5358	
изо-С ₆ Н ₁₁	73,0	145-150/0,5	C12H16O2	1,5311	
C ₆ H ₁₃	73,0	145-150/1	C13H18O2	1,5288	
C ₄ H ₁₅	73,0	153155/1	C14H20O2	1,5243	
C ₈ H ₁₇	72,0	161 168/1	C15H22O2	1,4922	
A 1700	100	- 12. 192		-	

	M	R _D	Λ	налі	R _f				
10.7	OH OH			C		1	окись алю- миния II сте-		
d ²⁰	вычисле	вычислено		вычисле вычис- лено найдено		найдено	вычис- лено нандено		пени актив- ности, под- вижная фа- за бензол
1,1192	37,187	38,924	70,57	71,86	6,92	9,44	0,65		
1,0593	41,805	43,261	71,98	72,42	6,71	6,99	0,77		
1,0577	47,405	48,563	73,14	73,66	7,36	7,61	0,79		
1,0408	46,433	49,87	73,14	73,82	7,36	7,24	0,80		
1,0458	51,723	52,616	74,12	74.98	7,91	7,22	0,81		
1,0197	51,051	54,247	74,12	74,54	7,91	7,29	0,70		
1,0156	55,669	59,010	74,96	75,87	8,39	9,4	0,73		
1,0227	55,669	58,170	74,96	75,51	8,39	8,95	0,73		
1,0540	60.287	60,347	75,69	75,57	8,79	8,58	9,77		
0,9849	64,905	68,476	76,32	76,71	9,15	9,22	0,78		
0,9261	69,523	73,438	76,83	71,27	9,46	9,58	0,79		

n-ROC.H.CH=C(COOC.	H ₅) ₂
--------------------	-------------------------------

-			_ <u>_</u>	3.7	8.5	M.	R _D	Анализ, %			
	9	10 3 4 1	риа	. 35	63.0	9		С		H	
R	0	Т. кип.,	ула	$n_{\rm D}^{20}$	d420	вычислено	2	ا ا	9	å	91
	ход	°C/.u.u	риу			чис	найдено	иминс лено	найдено	вычи лено	пайдено
	Вы	1933	Молеку			23	# # # # # # # # # # # # # # # # # # #	HP Me	E	Bb Je	E
CH,	62 0	178—180/3	CHO.	1.5615	1.1306	72,353	79,297	64,72	65,60	6,47	7,60
		185—190/1					84,16	65,75	65,91	5,81	7,53
		182—185/1					90,13	66,64	66,57	7,23	6,77
		175—180/1					88,18	66,64	65,77	7,23	8,01
		220-225/5					93,625	67,49	67,00	7,55	8,10
		185—190/1					94,152	67,49	67,72	7,55	7,90
		205-210/3					98,676	68,24	68,10	7,83	7,92
		197—200/1					98,019	68,24	68,52	7,83	7,47
		195—205/1					104,784	68,93	68,77	8,10	8,09
C.H	63.0	197—205/1	C, H,0O	1,5340	1,0676	100,061	105,533	69,58	70,02	8,34	8,39
C ₈ H ₁₇	60,0	224-225/1	C22H32O5	1,5041	1,0064	104,679	110,794	70,17	70,21	8,57	8,34
		1000	3-1 -1		*		1000		-	111	

Присоединение цианистого водорода к двойной связи. Во всех случаях хроматографического исследования в тонком закрепленном слое силикагеля использовались два варианта: а) бутанол, насыщенный аммиаком, проявитель—бромкрезолпурпуровый, и б) фенол—ксилол $85^{\circ}/_{\circ}$ —муравьиная кислота (3:7:1), проявитель—бромфеноловый синий (ошибка во всех случаях \pm 0,05°/ $_{\circ}$).

Смесь 4 г (0,0125 моля) n-бутоксибензилиденмалоната в 10 мл этанола, 1,22 г (0,025 моля) цианистого натрия в 10 мл воды кипятилась 6 часов. Спирт отгонялся при пониженном давлении, остаток после встряхивания с активированным углем отфильтровывался и подкислялся соляной кислотой, экстрагировался эфиром, высушивался сульфатом натрия, после отгонки эфира получалось полукристаллическое вещество. Хроматография: а) $R_{f_1} = 0,044$, $R_{f_2} = 0,24$, $R_{f_3} = 0,44$, $R_{f_4} = 0,40$; после перекристаллизации из бензола т. пл.: 135—140°, выход 2 г, хроматография: а) $R_{f_4} = 0,044$, $R_{f_5} = 0,24$, $R_{f_6} = 0,44$, $R_{f_6} = 0,40$; б) $R_{f_6} = 0,31$, $R_{f_6} = 0,40$, $R_{f_6} = 0,58$, $R_{f_6} = 0,61$. Как до, так и после перекристаллизации вещество представляет смесь n-бутоксибензилиденмалоновой $R_{f_6} = 0,044$, n-бутоксифенилсукцинамовой $R_{f_6} = 0,24$, β -циан- β -n-бутоксифенилпропионовой $R_{f_6} = 0,44$ и β -n-бутоксифенилакриловой $R_{f_6} = 0,40$ кислот.

Аналогично, из 7 г (0,025 моля) n-метоксибензилиденмалоната, 20 мл этанола, 2,45 г (0,05 моля) цианистого натрия и 20 мл воды было получено кристаллическое вещество с т. пл. 85°. Хроматография: а) $R_{f_a}=0,061,\ R_{f_a}=0,18,\ R_{f_s}=0,38,\ R_{f_s}=0,52;\ б)$ $R_{f_s}=0,043,\ R_{f_a}=0,27,\ R_{f_s}=0,40,\ R_{f_a}=0,40;$ после перекристаллизации из бензола

получалось 4 г ($80^{\circ}/_{\circ}$) вещества, представляющего 3-циан-n-метоксифенилпропионовую кислоту: а) $R_{f_{\circ}} = 0.38$, б) $R_{f_{\circ}} = 0.40$.

Присоединение цианистого водорода к этиловому эфиру α -циан-3-фенилакриловой кислоты проводилось по методу Лапворза и Бекера. После 2-минутного нагревания выделенное вещество подвергалось хроматографированию: а) $R_{f_u}=0.095,\ R_{f_u}=0.20,\ R_{f_u}=0.36.\ R_{f_u}=0.63,\ T. е. смесь содержит бензилиденмалоновую <math>R_{f_u}=0.095,\$ фенилсукцинамовую $R_{f_u}=0.20,\$ α-циан-3-фенилакриловую $R_{f_u}=0.36.\$ кислоты и этиловый эфир α , β -дициан- β -фенилпропионовой α 0, α 0, α 1, α 2, α 3, α 4, α 5, α 6, α 6, α 8, α 9, α 9,

n-Бутоксибензилиденмалоновая кислота. Смесь 3,1 г (0,1 моля) диэтилового эфира n-бутоксибензилиденмалоновой кислоты в 20 мл этанола и 0,9 г (0,021 моля) едкого натра в 10 мл воды кипятилась 4 часа, этанол отгонялся при пониженном давлении, к затвердевшему остатку приливалось 30 мл воды, масса отфильтровывалась; на фильтре оставалось 0,5 г натриевой соли β -n-бутоксифенилакриловой кислоты, труднорастворимой в воде. Из нее была выделена кислота с т. пл. 151°. При подкислении фильтрата соляной кислотой выпадала n-бутоксибензилиденмалоновая кислота с т. пл. 120—127°, содержащая незначительное количество n-бутоксифенилакриловой кислоты: а) $R_{\rm f} = 0,044$, $R_{\rm f} = 0,41$; б) $R_{\rm f} = 0,34$, $R_{\rm f} = 0,70$. Нагреванием 0,7 г (0,026 моля) n-бутоксибензилиденмалоновой кислоты при 170° в течение 10 минут и перекристаллизацией из бензола было выделено 0,55 г n-бутоксифенилакриловой кислоты с т. пл. 155°; а) $R_{\rm f} = 0,41$; б) $R_{\rm f} = 0,70$; по литературным данным, т. пл. 156° [8].

Аналогично были получены n-метоксибензилиденмалоновая кислота с т. пл. 191° ; а) $R_{f_a}=0,06$; б) $R_{f_a}=0,32$; а также n-метоксифенилакриловая кислота — т. пл. 186° ; а) $R_{f_a}=0,52$; б) $R_{f_a}=0,40$; по литературным данным, т. пл. n-метоксибензилиденмалоновой кислоты $185-186^\circ$, n-метоксифенилакриловой кислоты — 171° [18].

п-Алкоксифенилянтарные кислоты. Смесь 0,08 моля *п-*алкоксибензилиденмалоната в 75 мл этанола и 78 г (0,16 моля) цианистого натрия в 25 мл воды кипятилась 6 часов, приливался раствор 13,5 г (0,24 моля) едкого кали в 20 мл воды, смесь кипятилась 20 часов, спирт отгонялся, остаток экстрагировался эфиром; водный слой кипятился с углем, отфильтровывался и подкислялся соляной кислотой. Выпавшие кристаллы отфильтровывались, трехкратно перекристаллизовывались из 50%,-ного спирта (табл. 3).

Фенилянтарная кислота. Смесь 8,6 г (0,05 моля) α -циан- β -фенилакриловой кислоты, 40 мл этанола и 5,39 г (0,11 моля) цианистого натрия нагревалась на кипящей водяной бане 2 минуты, приливалось 100 мл воды; смесь подкислялась соляной кислотой. Выделившаяся маслообразная масса смешивалась со 100 мл концентрированной соляной кислоты и кипятилась 18 часов. По охлаждении осевшие кристаллы отфильтровывались. Выход после перекристаллизации из $50^{\circ}/_{\circ}$ ного этанола —5,3 г ($50^{\circ}/_{\circ}$); т. пл. 167° ; а) $R_{\rm f} = 0,095$; б) $R_{\rm f} = 0,34$; по литературным данным, т. пл. $164-166^{\circ}$ (15).

Таблица 3

n-ROC4H4C(COOH)HCH2COOH

		- 1.0		A	нали	R _f				
	%			- (l	1			
R	BHXOL 0	Т. пл., °С	Молекулярная формула	вычис-	пайдено	вычис-	найдено	a	б	
CH ₃	64,7	205	C11H13O5	58,92	59,38	5,35	5,45	0,50	0,12	
C ₂ H ₅	50,0	202	C12H14O5	60,50	60,61	5,88	5,80	0,48	0,11	
C ₃ H ₇	80,0	176	C13H16O5	61,87	61,72	6,38	6,49	0,55	0,19	
изо-С ₃ Н ₇	60,0	175	C ₁₃ H ₁₆ O ₅	61,87	61,96	6,38	5,85	0,51	0,18	
C ₄ H ₆	64,0	168	C ₁₄ H ₁₈ O ₅	63,15	63,15	6,79	6,81	0,26	0,20	
изо-С4Н,	60,9	158	C ₁₄ H ₁₈ O ₅	63,15	63,11	6,79	6,54	0,31	0,20	
C ₅ H ₁₁	65,0	161	C15H20O5	64,28	64,90	7,24	7,80	0,28	0,18	
изо-С ₅ Н ₁₁	59,0	162	C ₁₅ H ₂₀ O ₅	64,28	65,03	7,24	6,85	0,27	0,21	
C ₆ H ₁₃	64,0	141	C16H22O5	65,30	65,70	7,58	8,10	0,28	0,14	
C7H15	67,3	113	C17H24O5	66,23	65,4	7,84	8,02	0,27	0,15	
C ₈ H ₁₇	60,0	122	C18H26O5	67,08	66,83	8,07	8,13	0,23	0,15	

При щелочном гидролизе продукта присоединения цианистого водорода получалось вещество с т. пл. 132°, а после перекристаллизации из бензола — 145°, которое представляет собой фенилсукцинамовую кислоту; а) $Rf_{10}=0,20;$ б) $Rf_{10}=0,30;$ по литературным данным, т. пл. 145° [19].

Ангидриды п-алкоксифенилянтарных кислот. Смесь 0,047 моля п-алкоксифенилянтарной кислоты и 9,18 г (0,09 моля) уксусного ангидрида нагревалась на кипящей водяной бане 6 часов; уксусная кислота и уксусный ангидрид отгонялись при уменьшенном давлении. Низшие члены гомологического ряда подвергались перегонке в вакууме, а остальные вводились в реакцию после промывания абсолютным эфиром.

п-Алкоксифенилсукцинамовые кислоты. Смесь 0,047 моля ангидрида п-алкоксифенилянтарной кислоты в 50 мл абсолютного этилацетата, 1,7 г (0,1 моля) газообразного сухого аммиака в 100 мл абсолютного этилацетата оставлялась при комнатной температуре 3—4 часа. Выпавшая аммониевая соль отфильтровывалась, растворялась в воде, очищалась активированным углем и подкислялась соляной кислотой. Выпавшие кристаллы перекристаллизовывались из смеси бензол — петролейный эфир (табл. 4).

n-Aлкоксифенилсукцинимиды. 0,02 моля n-алкоксифенилсукцинамовой кислоты нагревалось при 220° в течение часа. Полученная стеклообразная масса перекристаллизовывалась из $50^{\circ}/_{\circ}$ -ного этанола (табл. 5).

Таблица 4

n-ROC.H.O	CCC	OHIH	CH.	ONH.
W-ILO CELLE	~(\~\	וונווטי	C1121	2011113

				A		Rf					
	0,0	_		C		Н		1		1	
B		Т. ил., С	Молекулярная формула		2	7.	110	7.	дено	a 6	
	Выход		4-1-1-1	нычис- лено	айдено	вычис	найдено	пычис	35		
	=		Total Control	ны	na	H DE	13	B P	= =		
СН	80,0	164	C11H13NO4	59,18	60,01	5.87	6,10	6,27	6,21	0.300,33	
C₂H₅				1					الا تخليد		
	70,0		C ₁₂ H ₁₅ NO ₄	60,74	60,86	6,37	7,02	5,90	5,87	0,27 0,30	
C ₃ H ₇	68,0	182	C ₁₃ H ₁₇ NO ₄	62,12	62,51	6,81	7,3	5,56	5,38	0,320,35	
изо-С _а Н ₇	70,0	173	C13H17NO4	62,12	62,90	6,81	7,46	5,56	5,36	0,31 0,33	
C ₄ H ₉	72,0	179	C14H19NO4	63,37	63,31	7,21	7,95	5,27	5,71	0,360,38	
изо-С4Н,	90,0	177	C14H19NO4	63,37	63,51	7,21	7,22	5,27	5,60	0,33,0,38	
C ₅ H ₁₁	85,0		C ₁₅ H ₃₁ NO ₄	64,49	64,90	7,57	7,67	5,01	5,12	0,350,40	
изо-С ₅ Н ₁₁	70,0	167	C15H21NO4	64,49	65,1	7,57	7,71	5,01	4,95	0,340,37	
C ₆ H ₁₃	87,0	133	C ₁₆ H ₂₃ NO ₄	65,50	65,61	7,20	7,81	4,77	4,59	0,320,38	
C ₇ H ₁₅		130-3	C ₁₇ H ₂₅ NO ₄	66,42	66,34	8,19	8,09	4,55	4,73	0,320,386	
C8H17	85,0	111	C18H27NO4	67,26	67,60	8,46	9,00	4,35	4,36	0,310,42	
100						1					

Таблица 5

	3			80	A	н а	л и з,	0/0		R _f	
		0,0		нав			Н	N		окись алю- миния II сте-	
R	Выход 0	Т. пл., °C	Молекулярная	яычис- лено	няйдено	вычис- лено найдено	лено	найдено	пени актив- ности, хло- рофоры— спирт (4:1)	a	
(CH ₃	75,0	135—7	C11H11NO3	64,38	64,40	5,41 5,21	6,82	6,89	0,60	0,63
(C ₂ H ₅	65,0	143	C12H13NO3	65,74	65,61	5,975,82	6,38	6,42	0,64	0,54
(C ₃ H ₇	67,0	92	C ₁₃ H ₁₅ NO ₃	66,93	66,54	6,486,50	6,00	5,95	0,62	0,75
1130-0	C ₃ H ₇	65,0	89	C13H15NO3	66,93	66,19	6,487,10	6,CO	5,49	0,60	0,65
(C ₄ H ₉	59,0	102	C14H17NO3	67,99	67,64	6,926,49	5,66	5,48	0,68	0,57
1130-0	C ₄ H ₉	61,0	104	C14H17NO3	67,99	68,21	6,926,98	5,66	5,46	0,69	0,60
(C5H11	71,0	96	C15H18NO3	68,94	68,72	7,32,7,67	5,36	5,8	0,69	0,58
1130-0	C5H11	70,8	108	C15H19NO3	68,94	68,69	7,32 7,34	5,36	5,8	0,65	0,56
(C6H13	69,0	98	C16H21NO3	69,79	69,61	7,687,74	5,08	5,33	0,56	0,53
(C, H 15	55,0	96	C17O23NO3	70,56	70,63	8,018,08	4,90	4,91	0,60	0,59
(C ₈ H ₁₇	60,0	99	C ₁₈ H ₂₅ NO ₃	71,25	71,21	8,308.49	4,61	4,79	0,64	0,61

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԵՐԿՀԻՄՆ ԿԱՐԲՈՆԱԹԹՈՒՆԵՐԻ ԱԾԱՆՑՅԱԼՆԵՐԻ ՔՆԱԳԱՎԱՌՈՒՄ

XXXII. պ-ԱԼԿՕՔՍԻՖԵՆԻԼՍՈՒԿՑԻՆԻՄԻԴՆԵՐ

Ս. Ա. ԱՎԵՏԻՍՅԱՆ և Հ. Լ. ՄՆՋՈՑԱՆ

Udhnhnid

ուսացիլ իր չ չաղատատարար ահանչըներ երկերիներ իսրւերութուու առանի իր չ չաղատատարար ահանչըներ երկերին իսրւերութու ահային իրաժաղարան ահանչըներ անագատան արանան անանչըն արաչներութուն ահանչըն արաչներութում ահանչըն անաջնավար ահային արաշանին արանչըն արանչըն արանչըն անաջնացում ավ ահային արանչըն ահային արանչըն արանչըն

պ-ԱլկօքսիֆենիլսաԹաթթուներն իրենց անհիդրիդների միջոցով վերածվում են սուկցինամաթթուների, որոնք տաքացնելիս իրենց հերթին, առաջացնում են պ-ակօքսիֆենիլսուկցինիմիդներ։

Ստացված միացությունների ֆարմակոլոգիական հետազոտությունները ցուլց տվեցին, որ նշված միացություններն ունեն հակացնցումային ակտիվություն։

ЛИТЕРАТУРА

- 1. О. Л. Миджоян, С. А. Аветисян, Н. Е. Акопян, Изв. АН АрмССР, ХН, 9, 722 (1966).
- 2. А. Л. Миджоян, А. А. Ароян, Труды ЕГУ, серия хим., 36, 21 (1952).
- 3. В. В. Довлатян, Канд. дисс., Ереван, 1953, стр. 72.
- 4. M. Sommelet, J. Maszak, C. r., 198, 2256 (1934).
- Н. А. Бабиян, В. А. Мнацаканян, Р. А. Арутюнян, О. Л. Мнджоян, Изв. АН АрмССР, ХН, 17, 549 (1964).
- Ng. Ph. Buu-Hoi, Hg. G. Xuong, Sg. Michel, Guy Lejeune, N. B. Tien, Bull. Soc. Chim. France, 1955, 1594.
- 7. L. Katz, L. S. Karger, W. Schreeder, M. S. Cohen, J. Org. Chem., 18, 1380 (1953).
- 8. G. W. Gray, B. Jones, J. Chem. Soc., 1954, 1467.
- 9. P. Viout, R. Douville, P. Rumpf, Bull. Soc. Chim. France, 1962, 1252.
- 10. C. Weygand, R. Gabber, J. Prakt. Chem., 155, 332 (1940); [C. A. 35, 1776 (1941)].
- 11. E. F. Praff, E. Werble, J. Am. Chem. Soc., 72, 4638 (1950).
- 12. Y. Ogata, M. Tsuchide, J. Am. Chem. Soc., 81, 2092 (1959).
- A. C. Cope, C. M. Hofmann, C. Wyckoff, E. Hardenbergh, J. Am. Chem. Soc., 63, 3452 (1941).
- О. Л. Миджоян, Э. Р. Багдасарян, Синт. гетер. соед., т. 5, изд. АН АрмССР, Ереван, 1960, стр. 61.
- 15. А. Лапворз, Синт. орг. преп., ИЛ, Москва, 1949, т. І, стр. 442.
- 16. G. B. Hoey, Ch. T. Lester, J. Am. Chem. Soc., 73, 4473 (1951).
- 17. C. Gnanadickam, Ann. Chem. (Parts), 7, 807 (1962); [C. A., 59, 5055a (1963)].
- 18. K. C. Pandya, T. A. Vahidy, Proc. Indian Acad. Sci., 4A, 134 (1936).
- 19. R. Anschütz, Lieb. Ann., 354, 117 (1907).