XXIII, № 2, 1970

УДК 542.91+547.781.3

2-(2'-АЛҚОҚСИ-5'-ХЛОРБЕНЗИЛ)-△²-ИМИДАЗОЛИНЫ

А. А. АРОЯН и М. А. ИРАДЯН

Институт тонкой органической химии АН Армянской ССР Поступило 9 VI 1969

Взаимодействием гидрохлоридов втиловых иминоэфиров и амидинов 2-алкокси-5-хлорфенилуксусных кислот с этилендиамином синтезирован ряд 2-(2'-алкокси-5'хлорбензил)имидазолинов. Исследована реакция метилового эфира 2-метокси-5-хлорфенилуксусной кислоты с этилендиамином. Синтезированные соединения представляют
интерес для испытания симпатомиметических и антигистаминных свойств.

Табл. 4, библ. ссылок 7.

Имидазолины в качестве лекарственных средств нашли применение благодаря своему влиянию на систему кровообращения.

Они оказывают как сосудорасширяющее, так и сосудссуживающее действие Однако, для них не найдена определенная зависимость между химической структурой и физиологической активностью. Сильным симпатомиметическим действием обладают 2-врилметилимидазолины. Среди них заслуживает внимания 2-бензилимидазолин (прискол), который вследствие своего сосудорасширяющего действия нашел применение для понижения кровяного давления [1]. Замена фенильной группы α-нафтильной приводит к препарату нафтизину (привин, санорин), который обладает сравнительно слабым, но более длительным, чем адреналин, сосудосуживающим действием [2].

Среди имидазолинов встречаются соединения, являющиеся антагонистами гистамина [3]. Наиболее известен антигистаминный препарат антистин—2-(фенилбензиламинометил)имидазолин, по активности близкий к антергану и почти нетоксичный [4].

Синтезированные нами соединения, являющиеся структурными аналогами названных выше препаратов, содержат в ароматической части молекулы алкокси группу и хлор и могут представлять интересдля испытания их симпатомиметических и антигистаминных свойств:

Соединения I синтезировали кипячением этанольных растворов гидрохлоридов иминоэфиров и амидинов 2-алкокси-5-хлорфенилуксусных кислот и этилендиамина:

Реакция лучше всего протекает при соотношении исходных продуктов 1:1 или при небольшом избытке этилендиамина. Соединения I — белые кристаллические вещества, хорошо растворимые в воде, этаноле, ацетоне, плохо — в метилэтилкетоне. Их очищают кипячением с метилэтилкетоном или перекристаллизацией из смеси абсолютного этанола и метилэтилкетона. Исходные гидрохлориды иминоэфиров получены по схеме:

$$\begin{array}{c|c}
OR \\
CI
\end{array}
\xrightarrow{Na_{2}CI}
\xrightarrow{Na_{2}CN}
\xrightarrow{C_{2}H_{2}OH, HCI}
\xrightarrow{NH_{2}}
II
\xrightarrow{NH_{2}}
III.$$

2-Алкокси-5-хлорбензилхлориды синтезированы хлорметилированием 4-алкоксихлорбензолов [5]. Хлорметилпроизводные нагреванием с цианистым натрием в среде абсолютного ацетона переведены в нитрилы с 60—70% выходами. Гидрохлориды этиловых иминоэфиров 2-алкокси-5-хлорфенилуксусных кислот получены пропусканием сухого хлористого ведорода через смесь нитрила и эквивалентного количества абсолютного этанола в абсолютном эфире и бензоле. Гидрохлориды ІІ получаются с 75—80% выходами и представляют белые кристаллические вещества, хорошо растворимые в воде, плохо—в органических растворителях. Соединения ІІІ синтезированы взаимодействием гидрохлоридов иминоэфиров с аммиаком в абсолютном этаноле; они хорошо растворимы в воде, этаноле, ацетоне не растворимы в эфире.

Мы попытались получить также 2-(2'-метокси-5'-хлорбензил)имидазолин из метилового эфира 2-метокси-5-хлорфенилуксусной кислоты по методу Моррила [6]. В результате реакции с 55% выходом получено кристаллическое вещество с т. пл. 229—230°, не растворимое в метаноле, эфире, ацетоне. По данным элементарного анализа, оно соответствует β-аминоэтиламиду 2-метокси-5-хлорфенилуксусной кислоты (V). Выделены еще два продукта в виде гидрохлоридов. Первый из них получается с 14% выходом и близок по температуре плавления к гидрохлориду имидазолина, полученного из соответствующего гидрохлорида иминоэфира II. Второй продукт представляет собой гидрохлорид не вошедшего в реакцию этилендиамина:

Для идентификации соединение V синтезировано по следующей схеме:

$$1V \xrightarrow{KOH} CH_{3}COOH \xrightarrow{SOCI_{3}} CH_{3}COCI \xrightarrow{(H_{8}NCH_{3})_{3}} V.$$

Аминоамид V, синтезированный этим путем, имеет т. пл. 233—234°; по другим своим свойствам и ИК спектру идентичен с продуктом V, полученным из IV по предыдущей схеме.

Можно предположить, что образование имидазолина взаимодействием метилового эфира 2-метокси-5-хлорфенилуксусной кислоты с этилендиамином проходит через амид V и в условиях, описанных Моррилом [6], не идет до конца, а останавливается на стадии образования этого соединения.

Экспериментальная часть

2-Алкокси-5-хлорбензилцианиды. Смесь 0,1 моля 2-алкокси-5-хлорбензилхлорида, 6,8 г (0,14 моля) измельченного цианистого натрия, 1 г йодистого натрия и 60 мл абсолютного ацетона при перемешивании кипятят на водяной бане в течение 16—20 часов. Затем отфильтровывают осадок, отгоняют ацетон, к остатку приливают 50 мл воды и маслянистый слой экстрагируют бензолом. Бензольный экстракт высушивают над прокаленным сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме (табл. 1).

Гидрохлорады этиловых иминоэфиров 2-алкокси-5-хлорфенилуксусных кислот (II). К раствору 0,1 моля 2-алкокси-5-хлорбензилцианида в 10 мл абсолютного бензола и 20 мл абсолютного эфира добавляют 4,6 г (0,1 моля) абсолютного этанола. При охлаждении водой, через смесь пропускают ток сухого хлористого водорода до насыщения. Раствор оставляют на день при комнатной температуре. Затем удаляют в вакууме растворитель, выпавший остаток промывают абсолютным эфиром и отфильтровывают. Перекристаллизацию проводят из абсолютного ацетона (табл. 2).

Таблица 1

R	BMXOA, 0/0	Т. кип., °С/мм	Т. пл., °С	Молекулярная формула	d ₄ ²⁰	п <mark>2</mark> 0	MR _D		Аналнз, ⁰ / ₀				°/o	
							- 4	вычислено	CH			N	N_	
							найдено		найдено	вычис-	найдено	вычис- лено	найдено	вычис-
CH ₃ •	72,9	138-140/1	66-67	C,HaCINO	_	_	-		59,37	59,51	4,69	4,44	7,46	7,71
C ₂ H ₅	70,8	141-143/1	73—74	C ₁₀ H ₁₀ CINO	_		_	_	61,56	61,38	5,32	5,15	7,41	7,16
C ₃ H ₄	60,1	148—150/1	55—56	C ₁₁ H ₁₂ CINO		_	- T	_	62,81	63,01	5,96	5,76	6,93	6,67
<i>изо-</i> С ₃ Н ₇	71,2	143-145/1	278	C11H12CINO	1,1430	1,5202	55,79	55,66	63,31	63,01	5,56	5,76	6,33	6,67
C ₄ H ₉	60,0	154156/1	56—57	C ₁₂ H ₁₄ CINO		_			64,72	64,45	6,48	6,31	5,93	6,26
<i>изо-</i> С ₄ Н _•	63,5	151—153/1	1	C ₁₃ H ₁₄ CINO	1,1112	1,5199	61,20	60,27	64,78	64,45	6,52	6,31	5,91	6,26

[•] По литературным данным [9], т. пл. 63°.

Таблица 2

	1	The same		Анализ, 0/0						
	%				С	I	1	N ,		
R	BMXOI,	Т. пл., °С	Молекулярная формула	найдено	вычис-	найдено	вычис-	найдено	вычис-	
CH ₃	82,0	137—138	C11H15C12NO2	49,71	50,01	5,48	5,72	4,95	5,30	
C ₂ H ₅	77,3	135-136	C12H17Cl2NO	51,57	51,81	6,33	6,16	5,15	5,03	
C ₃ H ₇	77,5	132-133	C ₁₃ H ₁₉ Cl ₂ NO ₂	53,15	53,43	6.82	6.55	5.11	4,79	
изо-СаН1	88,4	127—128	C12H19CI2NO2	53,68	53,43	6,80	6.55	4.95	4,79	
C ₄ H ₈	73,2	118—119	C14H21CI2NO	55,15	54,90	7.23	6.91	4,83	4,57	
<i>изо-</i> С ₄ Н ₉	71,5	125—126	C ₁₄ H ₃₁ Cl ₂ NO ₃	54,56		6,72	6,91	4,52	4,57	

Гидрохлориды 2-алкокси-5-хлорфенилацетажидинов (ПІ). Смесь 0,1 моля гидрохлорида этилового иминоэфира 2-алкокси-5-хлорфенилуксусной кислоты и 100 мл абсолютного этанола насыщают аммиаком до полного растворения осадка (около 20 минут). Отгоняют этиловый спирт досуха, добавляют абсолютный эфир и отфильтровывают выпавшие кристаллы (табл. 3).

Таблица 3

				Анализ, _0/0							
	%			С		Н		N			
R	Выход,	Т. пл., °С	Молекулярная формула	онациин	вычис- лено	найдено	вычис-	найдено	вычис- лено		
СН	95,7	176—177	C,H,,CI,N,O	45,78	45,97	5,28	5,14	12,36	11,91		
C ₂ H ₅	94,0	147—148	C10H14Cl2N2O	48,32	48,20	5,38	5,66	10,98	11,24		
C ₃ H ₇	93,3	137—138	C11H16Cl2N2O	49,92	50,20	6,42	6,12	10,42	10,64		
µ30-C₃H₁	84,0	138-139	C ₁₁ H ₁₆ Cl ₂ N ₂ O	50,45	50,20	6,34	6,12	10,40	10,64		
C ₄ H ₉	94,4	95—96	C12H18C12N2O	-52,22	51,99	6,37	6,50	10,38	10,10		
<i>µзо</i> -С ₄ Н ₉	90,0	128—129	C12H18CI2N2O	52,15	51,99	6,82	6,50	10,31	10,10		

Гидрохлориды 2-(2-алкокси-5-хлорбензил)имидазолинов (I). А. Смесь 0,05 моля гидрохлорида этилового иминоэфира 2-алкокси-5-хлорфенилуксусной кислоты, 3,3 г (0,055 моля) безводного этиленди-амина и 20 мл абсолютного этанола кипятят на водяной бане 6 ча-

сов. Затем в раствор пропускают сухой хлористый водород до кислой реакции на конго. От горячего раствора отфильтровывают гидрохлорид этилендиамина. Фильтрат выпаривают. Продукт кристаллизуется при добавлении абсолютного эфира. Кипячением в метилэтилкетоне или перекристаллизацией из смеси этанол-метилэтилкетон достигают постоянной точки плавления (табл. 4).

Таблица 4

- 1114	1	200		Анализ, %								
	0/0	Section 1		C		ŀ	I	N		CI		
R	Выход, 9	т. пл.,	Молекулярная формула	найдено	вычис-	найдено	вычис-	найдено	вычис-	найдено	вычис-	
CH ₂	76,0	166—167	C11H14Cl2N2O	50,32	50,59	5,45	5,40	11,04	10,72	27,50	27,18	
C ₂ H ₂				52,10	52,37	5,52	5,86	10,03	10,17	26,0	25,76	
C _a H				53,78	53,99	6,45	6,27	9,93	9,68	24,31	24,51	
изо-С,Н	75,3	161—162	C ₁₃ H ₁₈ Cl ₂ N ₂ O	54,26	53,99	5,98	6,27	10,06	9,68	24,82	24,51	
C ₄ H ₄	72,5	135—136	C14H20CI2N2O	55,23	55,45	6,46	6,64	9,57	9,23	23,28	23,38	
изо-C ₄ H	62,3	104—106	C14H20Cl2N2O	55,73	55,45	6,31	6,64	9,48	9,23	23,54	23,38	
	1			1	- 10	10					9.10	

Б. Смесь 0,012 моля гидрохлорида 2-алкокси-5-хлорфенилацетамидина, 0,78 г (0,013 моля) безводного этилендиамина и 10 мл абсолютного этанола нагревают 6 часов. Дальнейшая обработка такая же, как и при "А".

Метиловый эфир 2-метокси-5-хлорфенилуксусной кислоты (IV). В раствор 18 г (0,1 моля) 2-метокси-5-хлорбензилцианида и 80 мл абсолютного метанола пропускают ток сухого хлористого водорода (около 45 минут). Нагревают на водяной бане 8 часов. Затем отгоняют метанол, к остатку добавляют воду и экстрагируют эфиром. Эфирные экстраты высушивают над прокаленным сернокислым натрием и после отгонки растворителя остаток перегоняют в вакууме. Выход 14,6 г (68,2%); т. кип. 130—132°/1 мм; d^{20} 1,2426; n^{20} 1,5350. МRD найдено 53,78, вычислено 52,94. Найдено d^{20} 1,2426; d^{20} 1,5350. С10 Н11 С1О3. Вычислено d^{20} С 55,75; Н 5,16.

Взаимодействие метилового эфира 2-метокси-5-хлорфенилуксусной кислоты с этилендиамином. В колбу, снабженную термометром, доходящим до дна, и нисходящим холодильником, помещают 21,4 г (0,1 моля) метилового эфира 2-метокси-5-хлорфенилуксусной кислоты и 7,8 г (0,13 моля) этилендиамина. Температуру смеси медленно поднимают до 135° и поддерживают ее в течение 3 часов. При этом перегоняется метанол. Затем температуру повышают до 175°

и поддерживают ее в течение 2 часов. По охлаждении добавляют метанол, кипятят и осадок фильтруют. Выход β -аминоэтиламида 2-метокси-5-хлорфенилуксусной кислоты 13,4 г (55%); т. пл. 229—230°. Найдено %: С 54,68; Н 6,41; N 11,27. $C_{11}H_{15}CIN_2O_2$. Вычислено %: С 54,43; Н 6,23; N 11,54.

В метанольный фильтрат пропускают сухой хлористый водород до кислой реакции. Выпавший осадок гидрохлорида этилендиамина отсасывают и метанол выпаривают. К маслообразному остатку добавляют абсолютный эфир. Выпавшие кристаллы гидрохлорида 2-(2'-метокси-5'-хлорбензил)имидазолина отсасывают. Выход 3,7 г (14%).

2-Метокси-5-хлорфенилуксусная кислота. Смесь 21,4 г (0,1 моля) метилового эфира 2-метокси-5-хлорфенилуксусной кислоты и 32 мл $25^0/_0$ -ного раствора едкого натра нагревают 8 часов. Затем реакционную смесь подкисляют $10^0/_0$ -ной соляной кислотой, отсасывают выпавший осадок и сушат. Выход 16,4 г ($82,2^0/_0$); т, пл. $130-131^2$. По ли-

тературным данным [7], т. пл. 129°.

Хлорангидрид 2-метокси-5-хлорфенилуксусной кислоты. К смеси 20 г (0,1 моля) 2-метокси-5-хлорфенилуксусной кислоты и 40 мл абсолютного бензола при охлаждении по каплям добавляют 14 мл (0,2 моля) хлористого тнонила, растворенного в 30 мл абсолютного бензола. Нагревают на водяной бане 6 часов. Затем отгоняют растворитель, остаток перегоняют в вакууме. Выход 14,6 г (66,6%); т. кип. 134—136°/1 мм; d_4^{20} 1,3045; n_D^{20} 1,5498. М R_D найдено 53,48, вычислено 51,55. Найдено %: С 49,53; Н 3,82. $C_9H_8Cl_2O_2$. Вычислено %: С 49,34; Н 3,68.

β-Аминоэтиламид 2-метокси - 5 - хлорфенилуксусной кислоты (V). К смеси 9 г (0,15 моля) этилендиамина и 40 мл абсолютного бензола при охлаждении льдом и энергичном перемешивании прикапывают 11 г (0,05 моля) хлорангидрида 2-метокси-5-хлорфенилуксусной кислоты, растворенного в 30 мл абсолютного бензола. Смесь перемешивают при комнатной температуре в течение 2 часов, затем нагревают на водяной бане 3 часа. Выпавший осадок отфильтровывают и тщательно промывают водой. После кипячения в метаноле т. пл. 233—234°; выход 9,7 г, 80°/о теории.

2-(2′-ԱԼԿՕՔՍԻ-5′-ՔԼՈՐԲԵՆԶԻԼ)- Δ²- ԻՄԻԴԱԶՈԼԻՆՆԵՐ

2. U. ZUPNSUL L U. U. PPUPSUL

Ամփոփում

2-Ալկօ ջսի-5- քլորֆենիլ քացախան Թուների է Թիլալին իմինաէս Թերների և ամիդինների ու է Թիլենդիամինի փոխազդմամբ սիննեզված են մի շարջ 2-(2'-այկօ ջսի-5'- քլորբենդիլ)իմիդազոլիններ։ Հետազոտված է 2-մեթօքսի-5-քլորֆենիլքացախաթթեվի մեթիլէսթերի ռեակցիան էթիլենդիամինի հետ տարբեր պալմաններում, Սինթեզված միացությունները հետաքրքրություն են ներկալացնում իբրև պոտենցիալ սիմպատոմիմետիկ և անտիհիստամինալին նլութեր,

ЛИТЕРАТУРА

1. R. Meier, R. Muller, Schweiz. Med. Wochenschr., 69, 1271 (1939).

2. J. Lussier, Rev. can. biol., 5, 462 (1946) [C. A., 41, 810b (1947)].

3. B. N. Halpern. Arch. Intern. Pharmacodyn. Therap., 68, 339 (1942); [C. A., 38, 59572 (1944)].

4. R. Meler, K. Bucher, Schwelz. Med. Wochenschr., 76, 294 (1946).

5. A. A. Ароян, М. A. Ирадян, Арм. хим. ж., 22, 140 (1969).

6. H. L. Morrill, Пат. США 2,508,415 (1950) [C. A., 45, 668c (1950)].

7. M. Julia, M. Bailfarge, Bull. soc. chim. France, 640 (1953).