XXIII, № 2, 1970

УДК 542.947+547.12'333'554

ИССЛЕДОВАНИЯ В ОБЛАСТИ АМИНОВ И АММОНИЕВЫХ СОЕДИНЕНИЙ

LXIV. РЕАКЦИЯ ЦИКЛИЗАЦИИ-РАСЩЕПЛЕНИЯ

А. Т. БАБАЯН, Э. О. ЧУХАДЖЯН, Г. Т. БАБАЯН, Эл. О. ЧУХАДЖЯН и Ф. С. КИНОЯН

Институт органической химии АН Армянской ССР Поступило 18 VI 1969

Показана возможность каталитической циклизации аммониевых солей, содержащих наряду с группой аллильного типа 3-алкенилпропаргильную или 3-арилпропаргильную группу в соли дигидроизоиндолиния и дигидробензизоиндолиния, соответственно. Щелочным расщеплением последних получены соответствующие диалкиламинометилнафталины. Показано, что в отличие от солей с 3-алкенилпропаргильной группой, в случае солей с 3-арилпропаргильной группой реакцию циклизации-расщепления следует проводить ступенчато.

Табл. 3, библ. ссылок 4.

Ранее было установлено, что в результате воднощелочного расщепления четвертичных аммониевых солей, содержащих наряду с аллильного типа группой 3-алкенилпропаргильную группу, образуются замещенные в ядре N,N-диалкилбензиламины [1]:

Было показано, что образованию последних предшествует внутримолекулярная циклизация типа диенового синтеза, приводящая к солям дигидроизоиндолиния [2].

Чтобы отличить эту реакцию от обычного воднощелочного расщепления четвертичных аммониевых солей, будем называть ее реакцией циклизации-расщепления.

Настоящее сообщение посвящено дальнейшим исследованиям, в ходе которых установлена возможность осуществления стадии циклизации в присутствии каталитических количеств щелочи, а также вовлечения в реакцию циклизации 3-арилпропаргильной группы, что приводит к образованию солей дигидробензизоиндолиния:

$$R_3 \stackrel{CH_3CH=CH}{\longrightarrow} \stackrel{\overline{OH}}{\longrightarrow} R_2 \stackrel{CH_3-}{\longrightarrow} \stackrel{CH_3-}{\longrightarrow}$$

Механизм циклизации солей общей формулы A можно представить схемами [3]:

Согласно одной из них (а), циклизации предшествует прототропная изомеризация с образованием α-алленовой группировки. По другим, циклизация протекает без предварительной изомеризации и включает в себя гидридное (б) или протонное (в) перемещение.

Циклизация осуществлена на примере следующих солей аммония: диметилаллил(3-винилпропаргил) — (I), диметилаллил(3- Δ '-циклогексенилпропаргил) — (II), диметилметаллил(3-винилпропаргил) — (IV), диметилметаллил-(3- Δ '-циклогексенилпропаргил) — (V), диметилметаллил(3-фенилпропаргил) — (VII), диэтилаллил(3-фенилпропаргил) — (VII), диэтилаллил(3-фенилпропаргил) — (VIII).

Циклизация солей I, III и IV протекает быстро и с саморазогреванием. В остальных случаях требуется нагревание на кипящей водяной бане. Полученные данные приведены в таблицах 1 и 2.

При непосредственном воднощелочном расщеплении аммониевых солей, содержащих 3-арилпропаргильную группу (VI—IX), в отличие от солей с 3-винилпропаргильной группой [1, 2], ожидаемые продукты циклизации-расщепления получаются с низкими выходами. Основным направлением в большинстве случаев оказывается перегруппировка Стивенса:

	Поставления	H.	Найдено, ⁰ / ₀		4 17 6 7	Вычисл	ено. 0/0	Области
Исходная соль	Продукт циклизации (т. пл., °C)	Выход,	N	Гал.	Формула	N	Гал.	поглощения ИКС, с.v ⁻¹
$(CH_3)_3N$ $CH_3CH=CH_2$ $CH_3C=CCH=CH_2$ $CH_3C=CCH=CH_3$ $CH_3C=CCH_3$	$(CH_3)_2N$ CH_3 ET CH_3	85	6,43	34,60	C ₁₀ H ₁₆ NBr	6,09	34,80	3010, 1650
(CH ₃) ₃ N CH ₃ CH=CH ₃ B ₁ CH ₃ C≡C	(CH ₃) ₃ N CH ₃ - CH	80	5,28	28,25	C ₁₄ H ₂₂ NBr	4,93	28,17	3015, 1650
$(CH_3)_3N$ $CH_3C(CH_3)=CH_3$ $CH_3C=CCH=CH_3$ $CH_3C=CCH=CH_3$	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ (CH ₃ (CH ₃ (204)	83	7,10	17,92	C ₁₁ H ₁₈ NCI	7,00	17,78	3020 , 1643
$(CH_3)_3$ CH_3	CH ₃ (CH ₃) ₂ N CH ₂ ————————————————————————————————————	92	6,47	17,88	C ₁₃ H ₂₀ NCI	6,56	16,62	3010, 1650
$(CH_3)_3 \overset{+}{N} CH_3 C(CH_3) = CH_4$ $CH_3 C \equiv C - V$	CH ₃ + CH ₂ - CH ₂ - CH ₂ - CH ₂ - (188-189)	77	5,69	14.72	C ₁₈ H ₂₄ NCI	5,52	14,00	3010, 1640

Результаты каталитической циклизации аммониевых солей VI-IX в соли дигидробензизоиндолиния VIa-IXa

Mararuag ann	Найдено, %		TREE	Вычислено, 0/0		П	ri ri	Найдено, º/o		Областн	
Исходная соль (т. пл., °C)	N	Гал.	Формула	N Гал.		Продукт циклизацин (т. пл., °C)	Выход.	N	Гал.	поглощений УФ, <i>т</i> µ	
$(CH_3)_2N$ $CH_3CH = CH_3$ $CH_3C = CC_6H_5$ $CH_3C = CC_6H_5$ $CH_3C = CC_6H_5$	-	_	C ₁₄ H ₁₈ NBr	5,00	28,57	(CH ₃) ₂ N CH ₂ - CH ₂ - VIa (245)	76	5,21	28,78	230, 260, 275	
$(C_2H_3)_2N$ $CH_3CH=CH_3$ E $CH_3C=CC_4H_5$ $CH_3C=CC_4H_5$ $CH_3C=CC_4H_5$	4,92	25,25	C ₁₆ H ₂₃ NBr	4,54	25,64	(C ₂ H ₃) ₂ N CH ₂ CH ₂ VIIa (188-189)	84	4,3	26,05	230, 260, 275	
CH ₃ CH=CH ₃ CH ₃ C≡CC ₆ H ₅	4,52	23,77	C ₁₁ H ₂₂ NBr	4,37	25,00	CH ₃ -CH ₃ -	70	4,32	25,26	230, 265	
VIII (112—113)	4				3	VIIIa (189—190)		41 .	1900	15.75	
$(C_3H_5)_2N$ $CH_2CH = CHCH_3$ $CH_3C \equiv CC_6H_5$ $(125-126)$	5,08	13,11	C ₁₁ H ₂₄ NCI	5,04	12,78	(C ₃ H ₃) ₃ N CH ₂ CH ₂	83	-	12,50	230, 270, 250	

Воднощелочное расшепление соли VI изучалось до нас японскими авторами [4]; ими был выделен лишь продукт Стивенсовской перегруппировки с $22^{\circ}/_{\circ}$ выходом. Условия реакции несколько отличны: более разбавленные растворы, нагревание на кипящей водяной бане. Мы повторили опыт японских исследователей и установили, что и в этих условиях, наряду с продуктом стивенсовской перегруппировки, образуется продукт циклизации — 1,1-диметил-3,4-дигидро-5,6-бензизо-индолиниевая соль, которая, однако, в этих условиях не расщепляется и поэтому осталась незамеченной авторами.

Для получения хороших выходов продуктов циклизации-расщепления из солей с 3-арилпропаргильной группой необходимо сначала подогреть их водные растворы в присутствии каталитических количеств основания, т. е. в условиях, благоприятных для циклизации, но не для реакции Стивенса, и только затем к реакционной смеси добавить необходимое количество щелочи и подвергнуть расщеплению на масляной бане.

В таблице 3 приведены результаты воднощелочного расщепления продуктов циклизации солей VI—IX. В случае 1,1-диэтил-4-метил-3,4-дигидро-5,6-бензизоиндолиния (IXa) можно было ожидать образования двух изомерных аминов: 1,3-диметил-2- и 1,2-диметил-3-диэтил-аминометилнафталинов:

$$\begin{array}{c} CH_{3} \\ CH_{3$$

Действительно, была получена смесь двух изомерных аминов собщим выходом $70^{\circ}/_{\circ}$. Благодаря различной окраске (желтая и оранжевая) изомерные пикраты удалось механически отделить друг отдруга.

Армянский химический журнал, XXIII, 2-4

дро-	Продукт расщепления (выход, ⁰ / ₀)	Т. кип., °С/мм	d ²⁰	n20	Молекул ярная формула	Ана		л и з, Н		6/ ₀		Т. пл.	Области поглощений		
3,4-Дигидро- -5,6-бензизо- индолиниевая соль						найдено	вычис-	найдено	вычис-	найдено	вычис-	пикрата, °С	ИКС, <i>см</i> ⁻¹	УФ, тџ	
VIa	CH ₂ N(CH ₃) ₃ CH ₃ (70)	123—124/2	0,9980	1,5890	C14H17N	83,97	84,42	9,47	8,54	7,32	7,03	155—156	3060, 1940, 1905, 1802, 1785, 1760, 1695, 1610, 1510	220, 260, 275, 320, 330	
VIIA	CH ₃ N(C ₃ H ₆) ₃	134—135/ 1,5—2	0,9880	1,5740	C ₁₆ H ₂₁ N	84,70	84,58	9,32	9,25	6,40	6,16	115—117	3060, 3010, 1905, 1690, 1600, 1500, 855, 770, 750		
VIIIa	CH ₃ —(60)	т. пл. 66—67	-	-	C ₁₇ H ₂₁ N	85,40	85,36	8,70	8,78	6,18	5,85	147—148	3060, 1805, 1684. 1606, 1556, 1505, 1484	235, 245, 255, 265, 275, 290, 320	
lXa	CH ₃ CH ₃ N(C ₃ H ₃) ₃	130—137/ 1,5—2	1	1,5790	C ₁₇ H ₂₃ N	84,80	84,64	9,72	9,54	5,98	5,80	Оранже- вые 140 Желтые 160—161	3075, 3055, 1945, 1920, 1905, 1695, 1607, 1905, 1510,	275, 290,	
	CH ₃ CH ₂ N(C ₃ H ₆) ₃ CH ₃ (70)											100-101			

Экспериментальная часть

Каталитическая циклизация солей I—IX в соли дигидроизоиндолиния и -бензизоиндолиния (Ia—IXa). К водному раствору 0,05 моля испытуемой соли добавляют 2—3 мл 10%,-ного водного раствора едкого кали. Циклизация солей I, III и IV протекает быстро с саморазогреванием. В остальных случаях реакционную смесь нагревают на кипящей водяной бане в течение 1—2 часов. Затем реакционную смесь экстрагируют эфиром для удаления воэможных продуктов расщепления. Водный слой нейтрализуют соответствующей галоидоводородной кислотой, выпаривают досуха. Продукт циклизации экстрагируют абсолютным спиртом и перекристаллизовывают. О чистоте продуктов циклизации судят по отсутствию в ИКС поглощений в областях, характерных для исходной соли, и по наличию поглощений в областях, характерных для циклогексадиенильной системы (табл. 1, Ia—Va), и максимумов поглощений в областях, характерных для бензциклогексадиенильной системы (табл. 2, VIa—IXa).

Воднощелочное расщепление продуктов циклизации VIa—IXa.. К водному раствору продукта циклизации прибавляют тройное мольное количество 25%-оного раствора едкого кали. Смесь нагревают на масляной бане. Затем продукты расщепления экстрагируют эфиром. Эфирный экстракт обрабатывают соляной кислотой. Из солянокислого раствора подщелочением и экстрагированием эфиром извлекают аминные продукты реакции. Полученные результаты приведены в таблице 3.

Шелочное расщепление хлористого 1,1-диэтил-4-метил-3,4-дигидро-5,6-бензизоиндолиния (IXa). К 6,9 г (0,024 моля) соли IXa прибавляют тройное мольное количество $25^{\circ}/_{\circ}$ -ного водного раствора едкого кали. Реакционную смесь нагревают на масляной бане. Получено 4,8 г (0,02 моля, $83^{\circ}/_{\circ}$) высококипящих аминов. В результате перегонки выделена фракция в количестве 4 г с т. кип. $130-137^{\circ}$ (1,5 мм); n_D^{20} 1,5790. Найдено n_D° С 84,80; Н 9,72; N 5,98; М 242. n_D^{20} 1,5790. Вычислено n_D^{20} С 84,64; Н 9,54; N 5,80; М 241.

По данным тонкослойной хроматографии, состоит из трех веществ; концентрация одного из них ничтожна. ИКС свидетельствует о наличии *орто*-дизамещенного и пентазамещенного бензольных колец, ароматической двойной связи и ароматической С—Н (1945, 1905, 1695, 1920, 1580, 1607, 3075, 3055 cm^{-1}). УФ максимумы поглощений в этаноле 230, 240, 275, 290, 320 $m_{\rm p}$ характерны для нафталиновой системы. Пикрат, полученный из этой смеси аминов, плавится при 135—136°. После перекристаллизации и механического разделения выделены желтые кристаллы с т. пл. 160—61° и оранжевые с т. пл. 140°.

Ступенчатое проведение реакции циклизации-расщепления бромистого диэтилаллил-(3-фенилпропаргил)аммония (VII). К раствору 5 г соли VII в 5 мл воды прибавляют 2 мл $10^{0}/_{0}$ -ного раствора едкого кали. Реакционную смесь нагревают на кипящей водяной бане

в течение 2 часов, затем экстрагируют эфиром для удаления возможных продуктов расшепления. К реакционной смеси добавляют тройное мольное количество 25°/о-ного раствора едкого кали и на масляной бане осуществляют расшепление продуктя циклизации с одновременной отгонкой. Получено 2,3 г (62°/о) амина с т. кип. 170—172° при 5—6 мм; т. пл. пикрата 114—115°, не дает депрессии т. пл. в смеси с пикратом амина, полученного в результате воднощелочного расшепления промежуточной соли VIIa (табл. 2).

Воднощелочное расщепление соли VI в условиях [3]. Из 28 г соли VI получено 7,9 г ($40^{\circ}/_{o}$) амина с т. кип. $102-103^{\circ}$ при 2 мм; n_{D}^{20} 1,5420; т. пл. пикрата $116-117^{\circ}$, не дает депрессии т. пл. в смеси с пикратом продукта стивенсовской перегруппировки соли VI под действием порошка едкого кали [4]. В качестве неаминного продукта реакции получено 1,4 г ($8^{\circ}/_{o}$) карбонильного соединения с т. кип. $119-120^{\circ}$ при 2 мм; n_{D}^{20} 1,5860; d_{D}^{20} 2,019. Найдено o_{D}° : С 83,52; Н 7,12. С₁₂Н₁₂О. Вычислено o_{D}° : С 83,72; Н 6,97. Данные ИК спектроскопии свидетельствуют о наличии карбонильной группы, сопряженной с кратной связью альдегидного С—Н, несопряженной двойной связи, концевой винильной группы и монозамещенного бензольного кольца (1680, 2730, 1640, 3090, 1802, 1880, 1950 см⁻¹); т. пл. 2,4-динитрофенилгидразона 170°.

Водный слой реакционной смеси после подкисления бромистоводородной кислотой выпарен досуха и из остатка абсолютным спиртом выделено 3,4 г (12%) продукта циклизации с т. пл. 244—245°; не дает депрессии т. пл. с бромистым 1,1-диметил-3,4-дигидро-5,6-бензизоиндолинием (VIa).

ՀԵՏԱԶՈՏՈՒԹՅՈՒՆՆԵՐ ԱՄԻՆՆԵՐԻ ԵՎ ԱՄՈՆԻՈՒՄԱՑԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ԲՆԱԳԱՎԱՌՈՒՄ

LXIV. 814LU8UUV-XbQPUUV Abu481-U

u. P. pupusut, f. 2. anthursut, f. P. pupusut, f. 2. anthursut & S. v. prinsut

Udhnhnid

Նախկինում ցուլց էր տրված, որ ալիլային խմեր հետ մեկտեղ 3-ալկենիլպրոպարգիլ խումբ պարունակող ամոնիումական աղերը են Թարկվում են ներմոլեկուլային ցիկլացման, միջանկլալորեն առաջացնելով դիալկիլհիդրոիզոինդոլինիումական կոմպլեքս և հանդեցնելով դիալկիլբենզիլամինների ստացման [1, 2]։ Հետագա աշխատանջներով ցուլց է տրվել, որ ներմոլեկուլային
ցիկլացման փուլը կարելի է իրականացնել նաև կատալիտիկ քանակությամբ
հիմքի ներկալությամբ, Ռեակցիալի օգտագործման շրջանակները ընդլալնված
են։ Պարզվել է, որ ցիկլացման-ձեղջման ռեակցիան հաջողությամբ կարելի է
տարածել 3-արիլպրոպարգիլ խումբ պարունակող աղերի վրա։ Սակալն այս

դևպքում, ի տարրհրություն 3-ալկենիլպրոպարգիլ խումբ պարունակող արևրի, ցիկլացման փուլը պևտք է կատարել կատալիտիկ քանակությամբ հիմքի ներկայությամբ Մտիվենսյան վերախմբավորումից խուսափելու համար և ապա անհրաժեշա քանակությամբ հիմք ավելացնելով կատարել 2-րդ փուլը՝ հեղջումը, Ադերի կատալիտիկ ցիկլացման արդլունքները բերված են 1 և 2 աղլուսակներում։ 3-Արիլպրոպարգիլ խումբ պարունակող աղերի (VI—IX) կատալիտիկ ցիկլացման արդլունակող աղերի (VI—IX) արդլունակող աղերի (VI—IX) արդլունակող աղերի (VI—IX) արդլունակող արձրի (VI—IX) արդլունակող արձրի (VI—IX) արդլունակող արձրի (VI—IX) արդլումա

Փորձնականորհն ցուլց է տրվել, որ վերոհիշլալ աղերի ցիկլացման-ձեղ.թփուսոգոտողների արանական համարահիչին ծարություն գրություններ

կողմից [3], սակալն ալն վրիպել է նրանց ուշադրութլունից։

ЛИТЕРАТУРА

- 1. А. Т. Бабаян, К. Ц. Тагмазян, Г. Т. Бабаян. Арм. хим. ж., 19, 677 (1966).
- 2. А. Т. Бабаян, К. Ц. Тагмазян, Г. Т. Бабаян, А. Н. Оганесян, ЖОрХ, 4, 1323 (1968).
- 3. J. Jwal, Hiraoka, Chem. Pharm. Bull., 11 (12), 1556 (1963).
- 4. А. Т. Бабаян, Э. С. Ананян, Э. О. Чухаджян, Арм. хим. ж., 22, 894 (1969).