XXIII, № 12, 1970

УДК 535.543+539.183.2+541.8

ИССЛЕДОВАНИЕ ИЗОТОПНОГО ОБМЕНА МЕЖДУ НАСЫЩЕННЫМ РАСТВОРОМ И КРИСТАЛЛАМИ МОЛИБДЕНОВОКИСЛОГО НАТРИЯ

С. Г. БАБАЯН, С. С. ИСАХАНЯН и Л. П. МЕДВЕДЕВА Институт общей и неорганической химии АН Армянской ССР Поступило 3 X 1969

Исследован изотопный обмен между насыщенным раствором и кристаллами Na₂MoO₄·2H₂O, выделенными в процессе снятия пересыщения. Рассчитаны доли осадков, участвующих в изотопном обмене и свидетельствующих об установлении изотопного равновесия между твердой фазой и раствором в течение первых 10—15 минут процесса. Определена кинетика изотопного обмена между насыщенным раствором экристаллогидратом. Рассчитана константа скорости изотопного обмена.

Высказано предположение о доминирующей роли кристаллизационной воды в процессах гетерогенного изотопного обмена.

Рис. 5, табл. 1, библ. ссылок 14.

Выявление роли и положения воды в структуре концентрированных растворов и кристаллогидратов находится в центре внимания широкого круга исследователей.

Достаточно важная информация о роли и положении воды в гетерогенных процессах может быть получена при исследовании способности свежеприготовленных кристаллов в насыщенном растворе к изотопному обмену. В наиболее общем случае реакции гетерогенного изотопного обмена нестабилизированной твердой фазы протекают при непосредственном участии диффузии, способствующей миграции обменивающихся ионов аглубь твердой фазы и перекристализации кристаллов. Как правило, во всех известных случаях в системах, не содержащих кристаллизационную воду, эти два процесса являются доминирующими [1].

Изотопный обмен может находиться в зависимости от температуры и в известной мере от концентрации обменивающихся монов, но поскольку реакции изотопного обмена протекают при условии Е=О (Е—энергия активации), то в консечном счете температурная и концентрационная зависимости сводятся к изменению факторов диффузии и перекристаллизации.

В случае кристаллогидратов к перечисленным факторам следует добавить влияние кристаллязационной воды. Роль и положение последней в структуре кристаллогидратов до последнего времени окончательно не выяснены, несмотря на обширныю экспериментальный материал, посвященный вопросам квалификации (классические работы Бернала [2], Уэллса [3], Е. Грунера [4]) и участия воды в важнейших гетерогенных процессах [5].

В наиболее общем случае, учитывая специфические особенности исследуемой системы, можно предположить, что кристаллязационная вода, независимо от месторасположения в структуре кристаллогидрата (будь это аквакомплекс или анионный радикал, связанный с H₂O [6]), будет находиться в постоянном динамическом обмене с насыщенным раствором. В силу исключительной лабильности воды [7] могут облег-

читься процесс гетерогенного поверхностного обмена и диффузия обменивающихся нонов вглубь твердой фазы.

В настоящей работе исследовался изотопный обмен между насыщенным раствором и свежеприготовленными кристаллами Na₂MoO₄--2H₂O.

Экспериментальная часть

Кинетика гетерогенного изотолного обмена между насыщенным раствором Na₂MoO₄ и кристаллами исследовалась по методике, описанной нами ранее [8]. Готовились пересыщенные растворы Na2MoO4 концентрации 617 z/Λ (v=100 мл, $t=15^{\circ}$). Растворы последовательно переносились в термостатированный сосуд для определения растворимости и при интенсивном перемешивании (п=800 ∓100 об/мин) снималось пересыщение на 50, 90 и 100%. После снятия пересыщения на заданную величину насыщенный раствор и кристаллы Na2MoO4-2H2O переносились на стеклянный фильтр № 2 и твердая фаза откасывалась от маточного раствора. Отдельно готовился насыщенный активный, меченый радиоактивным изотом натрия—Na²², раствор Na₂MoO₄ (концентрация насыщения 544 г/л, $t=15^\circ$), переносился в сосуд для определения растворимости и термостатировался при перемешивании в течение 30 минут. После принятия насыщенным раствором температуры термостата в реакционный сосуд при интенсивном перемешивании вносилась твердам фаза. По истечении ~10 минут от начала процесса через определенные интервалы времени из реакционного сосуда отбирались пробы насыщенного раствора совместно с кристаллами. Пробы переносились на стеклянный фильтр № 3 и твердая фаза отсасывалась точного раствора. Маточный раствор использовалоя для определения содержания радиоактивного изотопа натрия. Концентрация насыщеяного раствора в каждый момент времени т фиксировалась титрованнем 0,1 и раствором НС1. Ошибка эксперимента $\mp 5^{\circ}/_{\circ}$.

Результаты опытов представлены на рисунках 1-3. С помощью экспериментальных данных рассчитаны доли осадков F, вступивших в обмен

$$F = \frac{R}{1+R} \cdot \frac{C_0}{C_{\tau}},\tag{1}$$

где $R = X_{\tau}/X_p$; X_{τ} — количество радиоактивного вещества в твердой фазе, $^0/_0$; X_p — количество радиоактивного вещества в растворе, $^0/_0$; C_0 — общее количество обменивающегося иона; C_{τ} — количество обменивающегося иона в твердой фазе в момент времени τ . Результаты расчетов представлены в таблице.

Таблица Значения доли осадков F, вступивших в изотопный обмен

Снятие пересыщения								
на 500/о			на 900/0			на 1000/о		
мин	Xp, 0/0	F	мин	Xp, º/o	F	мин	Xp, º/o	F
15 17 19 23 26 28 32 42 52 57	90,7 88,3 87,7 84,0 89,0 94,1 98,0 91,9 87,6 91,6	1,5 1,9 1,9 2,5 1,7 0,9 0,3 1,3 1,9	10 20 30 40 45 50 55 60 65 70 75	73,0 80,3 88,5 88,5 83,2 80,6 77,1 70,1 76,8 78,9 84,6	3,0 1,7 1,0 1,0 1,4 1,6 1,9 2,5 1,9 1,8 1,3	5 20 25 30 35 40 45 50 55 60 65 70 75 80 85	88,5 97,7 90,1 83,5 86,5 89,3 94,8 95,1 91,5 89,9 83,8 84,2 87,5 88,1	1.0 0.2 0.8 0.8 1.4 1.1 0.9 0.4 0.4 0.7 0.9 1.4 1.3

Обсуждение результатов

Кинетика изотолного обмена иоследовалась в условиях установления относительного изотопного равновесия между твердой фазой и насыщенным раствором. В изучаемом интервале времени трудно ожидать многократной перекристаллизации всей твердой фазы и, тем более, больших скоростей самодиффузии ионов натрия вглубь твердой фазы. Как правило, многократная перекристаллизация реализуется в случае быстрого выпадения всей твердой фазы плохо растворимой соли [9]. Даже в случае несовершенных структур изотопное равновесие путем самодиффузии иожнов достигается в продолжение длительного времени, так как скорость самодиффузии в твердой фазе чрезвычайно малая величина, порядка $10^{-9} - 10^{-12} \, \text{см}^2/\text{сек}$ [10]. Разумеется, малые окорости перекристаллизации и самодиффузии ионов не в состоянии обеспечить быстрое установление изологиного равновесия между твердой фазой и насыщенным раствором, наблюдаемого в системе Na₂MoO₄-2H₂O—насыщенный раствор. Действительно, как это видно из таблицы, доля осадка F, участвующая в изотопном обмене, уже по истечении первых 10-15 минут практически больше единицы. Некоторая разница в эначениях F осадков, выделенных в разные моменты снятия пересыщения, видимо, объясняется тем, что при онятии пересыщения на 50 и 90% твердая фаза, характеризующаяся еще несовершенной структурой, сразу же вводилась в контакт с ажтивным насыщенным раствором, тогда как при снятии пересыщения на 100% осадок предварительно стабилизировался в течение 40 минут.

Причину сложной зависимости X_{τ} от τ (рис. 1—3) следует искать в таком факторе, который, не изменяя состава пересыщенного

раствора и гранулометрического состава твердой фазы, существенно способствует скорости установления изотопного равновесия. Таким фак-

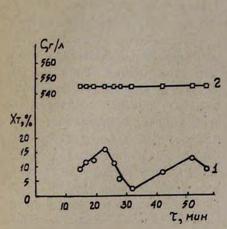


Рис. 1. 1 — Кинетика изотопного обмена между твердой фазой, выделенной при сиятии пересыщения на 50°/о, и насыщенным раствором; 2—результаты титрования насыщенного раствора Na₂MoO₄.

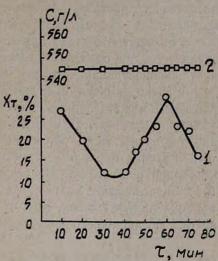


Рис. 2. 1—Кинетика изотопного обмена между твердой фазой, выделенной при снятии пересыщения на 90°/0, и насыщенным раствором; 2— результаты титрования насыщенного раствора Na₂MoO₄.

тором, на наш вэгляд, является участие в процессе временной акватации твердой фазы H₂O насыщенного раствора. Этот факт нами был установ-

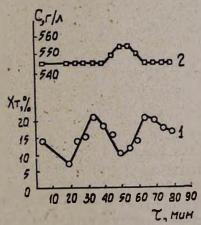


Рис. 3. 1 — Кинетика изотопного обмена между твердой фазой, выделенной при снятии пересыщения на 100% и насыщенным раствором; 2 — результаты титрования насыщенного раствора Na₂MoO₄.

лен ранее при исследовании систем: Na₂SiO₃·9H₂O—насыщенный раствор [1:1], Na₂HPO₄·12H₂O—насыщенный раствор [1:2] и Fe(NO₃)₃·9H₂O—насыщенный раствор [1:3]. При добавлении к кристаилам указанных солей

насыщенного раствора системы чрезвычайно быстро выходят из состояния равновесия. Одновременная фиксация концентрации и активности насыщенного раствора позволила выявить причину квазипериодических колебаний X_{τ} вблизи состояния равновесия.

В замжнутой системе при изотермических условиях такая картина реализуется при образовании химически активного промежуточного продукта, концентрация которого меняется периодически по времени [14].

В рассматриваемом случае причиной временной акватации твердой фазы может служить дополнительная координация ионов Na молекулами воды, когда у метапла не достигнуто допустимое координационное число. Такое объяснение достаточно хорошо согласуется с точкой зрения Бернала о спроении незогидратов [2]. Неизменность концентращии насыщенного раствора, за исключением одного экстремума (рис. 3), вследствие временного перехода некоторого количества H₂O в твердую фазу, очевидно, следует объяснить недостаточной чувствительностью типрационного метода регистрации концентрации Na₂MoO₄.

Отрищательная связь, обусловленная стремлением гетерогенной системы к установлению термодинамического равновесия, приводит к постепенному затуханию амплитуды колебания (рис. 1—3). Связывая колебательный характер функции $X_{\tau} = F(\tau)$ с периодическим обогащением и обеднением кристаллов Na₂MoO₄·2H₂O водой насыщенного раствора, кривую зависимости X_{τ} от τ можно рассматривать как суммарную из двух кривых: функции $X_{\tau}' = F'(\tau)$ (где $X_{\tau} - {}^{0}/_{0}$ изотопного обмена) и $X_{\tau} = F''(\tau)$ (где X_{τ} — величина, равная приращению или убыли X_{τ} при изменении концентрации раствора, ${}^{0}/_{0}$).

Сложная зависимость X_{τ} от τ хорошо описывается уравнением

$$X_{\tau} = F'(\tau) - d \cdot e^{-k_1' \cdot \tau} \cdot \cos \tau', \qquad (2)$$

где d и k_1 — эмпирические постоянные (для кривой, представленной на рис. 3. $d=6\mp1$; $k_1=1.5\cdot 10^{-8}$); $\tau'=\frac{2\pi}{\Delta \tau_p}$ τ ($\Delta \tau_p$ — период функции, $\Delta \tau_p\simeq 28$ мин). Следует отметить, что аналогичным уравнением описываются и кривые, представленные на рисунках 1 и 2. Но поскольку колебания X_τ в зависимости от τ не периодичны, описание этих кривых удается только в случае, если вместо τ оперировать приведенным временем τ'_n ($\tau'_n=\exp(d'\cdot\tau)$ [13]).

Второй член уравнения (2) имеет определенный физический смысл, так как связан с самой природой системы. При прочих равных условиях величины d и k_1 являющиеся мерой отклонения системы от состояния равновесия и пожазателем релаксации, указывают также на большую лабильность H_2O в гетерогенных процессах.

Воспользовавшись уравнением (2), с помощью экспериментальных данных легко рассчитать значения функции $X_{\tau} = F'(\tau)$ (рис. 4). Кривая зависимости X_{τ} от τ , представленная на рисунке 4, имеет ха-

рактерный для процессов гетерогенного изотопного обмена вид и достаточно хорошо описывается уравнением, выведенным для кинетики изотопного обмена (рис. 5) [8]

$$X_{T_{\text{kop}}} = \frac{k \cdot X_0}{1+k} [1 - \exp(-k' \cdot \tau)],$$
 (3)

где k — константа равновесия; k' — константа скорости реакции (k' = $4.8 \cdot 10^{-2}$ мин $^{-1}$); X_0 — концентрация обменивающегося иона в насыщенном растворе при $\tau = 0$.

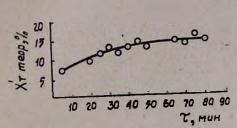


Рис. 4. Зависимость количества обменивающего иона в твердой фазе от времени, подсчитанная с помощью уравнения (2).

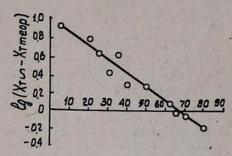


Рис. 5. Зависимость $\lg (X_T - X_{T_{Teop}})$ от времени τ ; X_T — количество обменивающегося иона в твердой фазе в момент установления равновесия, $^0/_0$, $(X_{T_{cc}} = 15.0)$.

Константа скорости реажции к' служит важной характеристикой кинетики гетерогенной реакции и позволяет судить о силе связи обменивающихся ионов в кристаллической структуре изучаемого кристаллогидрата. По аналогии с исследованными ранее кристаллогидратами можно предположить, что высокие скорости изотопного обмена достигаются преимущественно за счет большой лабильности кристаллизационной воды, которая, находясь в постоянном динамическом обмене с насыщенным раствором, играет доминирующую роль в процессе самодифузии.

ՆԱՏՐԻՈՒՄԻ ՄՈԼԻՔԴԵՆԱՏԻ ՀԱԳԵՑԱԾ ԼՈՒԾՈՒՅԹՆԵՐԻ ԵՎ ԲՅՈՒՐԵՂ-ՆԵՐԻ ՄԻՋԵՎ ԻԶՈՏՈՊԱՅԻՆ ՓՈԽԱՆԱԿՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

Ս. Գ. ԲԱԲԱՑԱՆ, Ս. Ս. ԻՍԱԽԱՆՑԱՆ և Լ. Պ. ՄԵԴՎԵԴԵՎԱ

Udhnhnid

Հագեցած լուծույթում թարմ պատրաստված բյուրեղների իզոտոպային փոխանակման ընդունակության ուսումնասիրությամբ կարելի է ստանալ կարևոր տեղեկություններ հետերոգեն պրոցեսներում ջրի վիճակի և դերի մասին։ Իզոտոպային փոխանակման կինհտիկան ուսումնասիրվել է հագեցած լուծույթի և պինդ ֆազի միջև ստեղծված համեմատական իզոտոսլային հավասարակշռության պայմաններում։

Ցույց է տրված, որ իզոտոպային փոխանակմանը մասնակցող նստվածբի քանակը 10—15 րոպեի ընթացքում գործնականորհն հավասար է մեկի։

Պրոցեսն արագացնող գործոն կարող է լինել պինդ ֆազի կողմից Հագևդած լուծուլթից ջրի ժամանակավոր ակվատացիան։

Որոշված է բյուրեղահիդրատների և հագեցած լուծույթի միջև իզոտոպային փոխանակման կինետիկան։

ЛИТЕРАТУРА

- А. Валь, И. Боннер, Использование радиоактивности при химических исследованиях, Изд. ИЛ, Москва, 1954, стр. 36.
- 2. Дж. Д. Бернал, Усп. хим., 25, 643 (1956).
- 3. A. F. Wells, Quart. Revs. chem. Soc., 8, 380 (1954).
- 4. E. Gruner, Kolloid Zeitschr., 111, 31 (1848).
- В. И. Семишин, ЖНХ, 8, 130 (1963).
- 6. D. R. Stranks, R. G. Wilkins, Chem. Revs., 57, 743 (1957).
- 7. S. Hunt, H. Taubb, J. Chem. Phys., 19, 602 (1952).
- 8. С. Г. Бабаян, А. М. Арутюнян, М. Г. Манвелян, Арм. хим. ж., 21, 81 (1968).
- 9. L. Harburg, J. Phys. Chem., 50, 190 (1946).
- 10. А. Полесицкий, А. Мурин, ДАН СССР, 45, 283 (1944).
- 11. С. Г. Бабаян, А. М. Арутюнян, Радиохимия (в печати).
- 12. С. Г. Бабаян, С. С. Исаханян, Л. П. Медведева, Радиохимия (в печати).
- 13. С. Г. Бабаян, С. С. Исаханян, Л. П. Медведева, Радиохимия (в печати).
- 14. Д. А. Франк-Каменецкий, Диффузия и теплопередача в химической кинетике, Изд. «Наука», Москва, 1967, стр. 431.