XXIII, № 11, 1970

УДК 542.952.6+547.538.141

производные стирола

XVII. СИНТЕЗ И ПОЛИМЕРИЗАЦИЯ 4-ВИНИЛ-4'-АЛКОКСИДИФЕНИЛМЕТАНОВ

Г. М. ПОГОСЯН, А. Т. МКРТЧЯН, Л. М. АКОПЯН н С. Г. МАЦОЯН Институт органической химии АН Армянской ССР Поступило I VIII 1969

Синтезирован и охарактеризован ряд 4-винил-4'-алкоксидифенилметанов. Изученс нх радикальная полимеризация; показано, что с удлинением углеводородного остатка алкокси группы повышается скорость полимеризации мономеров. Определены характеристическая вязкость и температура стеклования полученных полимеров.

Рис. 2, табл. 3, библ. ссылок 3.

До настоящего времени в литературе отсутствуют сведения о получении и полимеризации алкоксибензильных производных стирола. Из этого ряда описан л ишь 4-бензилстирол, который под действием ультрафиолетовых лучей образует полимер с температурой размягчения 105—1:10° [1]. Продолжая изучение влияния различных заместителей на способность к полимеризации ядернозамещенных стиролов и свойства полимеров, в настоящей работе исследованы синтез и полимеризации некоторых 4-винил-4'-алкоксидифенилметанов. Синтез мономеров осуществляли по следующей схеме:

$$\bigcirc CH_{2}CH_{2}OH \longrightarrow \bigcirc CH_{2}CH_{2}Br \longrightarrow CICH_{2}\bigcirc CH_{2}CH_{2}Br \longrightarrow$$

$$\longrightarrow RO \bigcirc CH_{2}\bigcirc CH_{2}CH_{2}Br \longrightarrow RO \bigcirc CH_{2}\bigcirc CH_{2}=CH_{2},$$

где $R=CH_3$, C_2H_5 , C_3H_7 , $u30-C_3H_7$, C_4H_9 , $u30-C_4H_9$, C_5H_{11} , $u30-C_5H_{11}$.

Хлорметилированием β-фенилэтилоромида, приготовленного действием 40%-ной бромистоводородной кислоты на β-фенилэтиловый спирт, получен 4-β-бромэтилоензилхлорид, который при взаимодействии с алкоксибензолами в присутствии каталитических количеств треххлористого железа образует соответствующие 4-(β-бромэтил)-4'-алкоксидифениламетаны. Дегидробромированием полученных 4-(β-бромэтил)-4'-алкоксидифенилметаные с помощью спиртового раствора едкого кали синтезированы 4-винил-4'-алкоксидифенилметаны.

Полимеризацию синтезированных мономеров проводили в одинаковых условиях—в массе при 80° в присутствии 0,5 мол. % динитрила азо-

изомасляной кислоты (рис. 1). Для сравнения способности к полимеризации и свойств полученных полимеров в тех же условиях изучена полимеризация 4-бензилстирола. Как видно из полученных данных, налбольший выход и наивысшее значение характеристической вязкости
($[\gamma_i]$) и температуры стеклования (T_c) имеет поли-4-бензилстирол; вопреки ожиданию, в ряду алкоксизамещенных бензилстиролов по мере
увеличения длины цепи алкоксильной группы повышается их способность
к полимеризации. Аналогичная закономерность имеет место и при полимеризации алкоксипроизводных 4-бензилстирола в растворе; 4-винил4'-амилоксидифенилметан в растворе толуола полимеризуется значительно быстрее по сравнению с его метоксианалогом (рис. 16). Таким

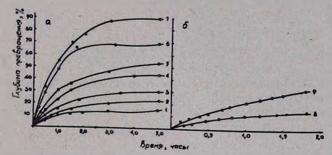


Рис. 1. а) Зависимость глубины превращения 4-винил-4'-алкоксидифенилметанов от продолжительности реакции в присутствии 0,5 мол. 0/0 ДАК (от мономера) при 80°. 1—4-винил-4'-метоксидифенилметан; 2—4-винил-4'-изобутоксидифенилметан; 3—4-винил-4'-этоксидифенилметан; 4—4-винил-4'-пропоксидифенилметан; 5—4-винил-4'-бутоксидифенилметан; 6—4-винил-4'-амилоксидифенилметан; 7—4-бензилстирол,

6) Зависимость глубины превращения в толуоле дилатометрическим методом при 80° ; концентрация мономера 1 моль/л; концентрация ДАК $5 \cdot 10^{-3}$ моль/л; 8 - 4-винил-4'-метоксидифенилметан; 9 - 4-винил-4'-амилоксидифенилметан.

образом, в ряду изученных 4-винил-4'-алкоксидифенилметанов по реакционной способности наблюдается порядок: С₅H₁₁O> аномальный $> C_4H_2O > C_3H_7O > C_9H_5O > CH_3O;$ способность К полимеризации тем больше, чем сильнее стерические препятствия групп мономеров. Аномальное поведение 4-винил-4'-алкоксидифенилметанов объясняется, по-видимому, внутримолекулярным взаимодействием заместителей фенильных групп мономера, что приводит к искажению углов плоскостей между ароматическими кольцами [2]. Вполне вероятно, что с утяжелением алкоксильных остатков из-за повышения пространственного эффекта угол между фенильными кольцами увеличивается и тем самым доступность винильной группы для атаки растет.

При изучении термомеханических свойств (рис. 2) и вязкостей полученных полимеров найдено, что увеличение углеводородного остатка

алкокси группы приводит к понижению T_c и $[\eta]$ поли-4-винил-4-алкоксидифенилметанов. Таким образом, введение алкоксильной группы в пара-положение поли-4-бензилстирола уменьшает как T_c , так и $[\eta]$ его алкоксипроизводных.

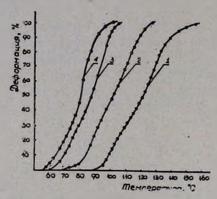


Рис. 2. Термомеханические свойства полимеров 4-винил-4'-алкоксидифенилметанов: 1 — 4-бензилстирол; 2 — 4-винил-4'-метоксидифенилметан; 3 — 4-винил-4'-этоксидифенилметан; 4 — 4-винил-4'-бутоксидифенилметан.

Очищенные образцы полученных полимеров, за исключением полимеров 4-винил-4'-пропокси- и 4-винил-4'-амилоксидифенилметанов, представляют собой белые порошки, растворимые в ароматических и клорсодержащих углеводородах и не растворимые в низших спиртах и петролейном эфире.

Экспериментальная часть

4-(β-Бромэтил) 4'-алкоксидифенилметаны. 23,4 г (0,1 моля) 4-β-бромэтилбенэилхлорида, 0,5 моля соответствующего алкоксибензола и 0,06г хлорного железа, растворенного в 0,6 мл сухого нитробензола перемешивали на масляной бане при 110° в течение 1 часа; при этом наблюдалось бурное выделение хлористого водорода. Затем содержимое колбы охлаждали и экстрагировали петролейным эфиром. Экстракт промывали 12,5%-ной соляной кислотой, насыщенным раствором бикарбоната натрия и водой, сушили сульфатом натрия. После удаления растворителя и перегонки остатка в вакууме получены соответствующие 4-(β-бромэтил)-4'-алкоксидифенилметаны, выходы, физико-химические константы и данные элементарного анализа которых приведены в таблице 1.

4-Винил-4'алкоксидифенилметаны. К перемешиваемой омеси 0,1 моля 4-(β-бромэтил)-4'-алкокоидифенилметана в 100 мл метанола и 50 мг 4-трет-бутилпирокатехина по каллям добавляли раствор 6,7 г (0,12 моля) едкого кали в 50 мл метанола. Реакционную омесь нагревали на кипящей водяной бане в течение 1 часа, удаляли метанол, выпавшую соль растворяли в небольшом количестве воды, продукт экстрагировали

R	Выход, 0/0	Т. кпи., °С/мм	Молекулярная формула	$\mathfrak{n}_{\mathrm{D}}^{20}$	
CH₃	73,2	189—91/3	C ₁₆ H ₁₇ BrO	1,5892	
C ₂ H ₅	71,7	182—84/1	C ₁₇ H ₁₉ BrO	1,5818	
C ₃ H ₇	69,1	187—90/1	C ₁₈ H ₂₁ BrO	1,5730	
изо-С, Н,	74,2	176-78/1	C ₁₈ H ₂₁ BrO	1,5855	
C ₄ H ₉	66,3	193-95/1	C ₁₀ H ₂₃ BrO	1,5691	
изо-С4Н,	70,0	190-92/1	C ₁₉ H ₂₃ BrO	1,5770	
C ₅ H ₁₁	69,1	208-10/2	C ₂₀ H ₂₅ BrO	1,5648	
изо-С ₅ Н ₁₁	73,1	192—93/1	C ₃₀ H ₃₅ BrO	1,5625	

	N	MR _D		Анализ, 0/0						
-1		НО		С		Н		Br		
q ⁴ ₅₀	найдено	вычислено	найдено	вычис- лено	найдено	вычис- лено	найдено	вычис-		
1,2689	81,08	78,30	63,46	62,96	5,81	5,56	25,40	26,18		
1,2329	86,38	82,91	64,55	63,95	5,98	5,90	25,02	25,03		
1,2047	91,15	87,53	64,99	64,87	6,00	6,35	24,29	23,97		
1,2193	91,66	87,53	65,25	64,87	6,02	6,35	23,90	23,97		
1,1905	93,35	92,15	66,01	65,70	6,57	6,67	23,48	23,01		
1,2314	93,46	92,15	65,95	65,70	6,43	6,67	24,00	23,01		
1,1729	100,35	96,77	66,93	66,48	6,85	6,97	22,40	22,11		
1,1721	100,04	96,77	66,35	66,48	6,87	6,97	22,39	22,11		

RO CH₂

R	Buxon, º/o	Т. кип., °С/мм	Молекулярная формула	n ²⁰
CH ₃	65,0	148-50/1	C ₁₆ H ₁₈ O	1,5903
C ₂ H ₅	68,0	151-53/1	C1711180	1,5829
C ₃ H ₁	63,5	158-60/1	C ₁₈ H ₂₀ O	1,5757
ило-С ₃ Н ₂	64,2	16365/1	C ₁₈ H ₂₀ O	1,5812
C ₄ H ₉	70,0	156-57/6	C ₁₉ H ₂₂ O	1,5690
изо-С ₄ Н ₉	64,5	158-59/1	C19H22O	1,5750
C ₅ H ₁₁	63,7	17981/1	C20H24O	1,5650
изо-С ₅ Н ₁₁	67,1	172—74/1	C ₂₀ H ₂₄ O	1,5617

Таблица 2

СН=СН,

d ²⁰	MR _D		Анализ, °/0				
		0	C		Н		
	найдено	вычислено	найдено	вычис-	найдено	вычис-	
1,0613	71,67	70,06	85,60	85,67	7,46	7,23	
1,0538	75,49	75,68	85,40	85,64	7,69	7,74	
1,0334	80,77	79,30	85,52	85,67	8,25	7,98	
1,0557	79,68	79,30	85,30	85,67	7,52	7,98	
1,0165	85,85	83,92	85,34	85,63	7,92	8,32	
1,0292	85,44	83,92	95,59	85,63	8,35	8,32	
1,0124	90,21	88,53	85,49	85,66	8,60	8,62	
1,0050	90,44	88,53	85,42	85,66	9,16	8,62	

эфиром и сушили сульфатом натрия. После удаления растворителя и перегонки остатка в вакууме получены соответствующие 4-винил-4'-ал-коксидифенилметаны, выходы, физико-химические константы и данные элементарного анализа которых приведены в таблице 2.

Полимеризация. Свежеперегнанные мономеры полимеризовали в массе в тщательно промытых стеклянных ампулах. После введения в ампулу соответствующего мономера и инициатора ее перед запаиванием охлаждали смесью льда и соли, продували азотом и откачивали в вакууме. Продувание азотом и откачивание повторяли несколько раз. Запаянные ампулы нагревали в термостате при выбранной температуре.

Образовавшиеся полимеры осаждали из бензольных растворов метиловым спиртом. Осевшие полимеры отфильтровывали и после повторного осаждения сущили при 54° в вакууме (10—20 мм) до постоянного веса. Характеристические вязкости полученных полимеров определяли вискозиметром Оствальда при 20° для растворов полимеров в толуоле (табл. 3).

Таблица 3 Полимеризация 4-винил-4'-алкоксидифенилметанов в присутствии 0,5 мол. ⁰ дАК при 80° (продолжительность полимеризации 15 час)

Мономер	Выход поли- мера, ⁰ / ₀	[η] по- лимера, дл/г	<i>T</i> _c полимера, °C	
4-Бензилстирол	92,8	0,91	93	
4-Винил-4'-метоксидифенилметан	32,1	0,31	80	
4-Винил-4'-этоксидифенилметан	41,9	0,16 0,09	66 каучукоподобный	
4-Винил-4'-пропоксидифенилметан				
4-Винил-4'-бутоксидифенилметан	57,5	0,09	61	
4-Винил-4'-амилоксидифенилметан	71,8	0,10	каучукоподобный	

Определение температуры стеклования полученных полимеров проводили в приборе, сконструированном Цетлиным с сотрудниками [3]. Термомеханические кривые, показывающие деформацию образца полимера в зависимости от температуры, сняты при напрузке 0,34 кг/см². Температуру стеклования определяли экстраполированием прямолинейного участка термомеханической кривой на ось абсцисс.

ՍՏԻՐՈԼԻ ԱԾԱՆՑՅԱԼՆԵՐ

XVII. 4-4PVPL-4'-UL40PUPAPSUVPLUBPUVVPP UPVPBQ by ANIPUBPUBNPU

9. U. ANGNUSUV, U. S. UHPSQBUV, L. U. 2UHNPBUV L U. 9. UUBNBUV

Udhahaid

Նպատակ ունենալով հետազոտել մի շարք 4-ալկօքսիրենզիլ տեղակալված ստիրոլների պոլիմերանալու ընդունակությունը, իրականացրել ենք 4-վինիլ-4'-ալկօքսիդիֆենիլմեթանների սինթեղ, ուսումնասիրել պոլիմերացման ռեակցիայի որոշ օրինաչափություններ և ստացված պոլիմերների մի քանի հատկություններ և ստացված պոլիմերների մի քանի հատկությունները։ 4-Վինիլ-4'-ալկօքսիդիֆենիլմեթանների սինթեզը 64—70% ելքով իրականացվել է հետևյալ կերպ՝ β-ֆենիլէթանոլ → β-ֆենիլէթիլբրո-միդ → 4-β-բրոմէթիլբենզիլքլորիդ → 4-β-բրոմէթիլ-4'-ալկօկսիդիֆենիլմե-թան -> 4-վինիլ-4'-ալկօքսիդիֆենիլմեթան։

Ստացված մոնոմերների պոլիմերացումն ուսումնասիրվել է զանգվածում և լուծուլթում, ազոիզոկարագանթվե դինիտրիլի ներկայությամբ և ցույց է տրվել, որ 4-վինիլ-4'-ալկօքսիդիֆենիլմեթանների ալկօքսի խմբի մեծաց-մանը զուգընթաց մեծանում են պոլիմերվելու արագությունը և ըստ ռեակ-ցիոնունակության նվազման նրանք կազմում են հետևյալ շարքը՝

$$C_8H_{11}O > C_4H_8O > C_2H_5O > CH_8O$$

Որոշված են ստացված պոլիմերների բնութագրական մածուցիկովթյուն-Ները և ապակեցման ջերմաստիձանները։

ЛИТЕРАТУРА

- 1. C. S. Marvel, D. W. Hein, J. Am. Chem. Soc., 70, 1895 (1948).
- 2. P. Bothorel, Ann. chim. [13], 4, 669 (1959).
- 3. Б. Л. Цетлин, В. И. Гаврилов, Н. А. Великовская, В. В. Кочкин, Зав. лаб., 22, 352 (1956).