XXIII, № 10, 1970

УЛК 542.01+547.582.4

N,N-бис (β-ХЛОРЭТИЛ) - и N-β-ХЛОРЭТИЛАМИДЫ 2-АЛКОКСИ-, 2-АЛКОКСИ-4-БРОМБЕНЗОЙНЫХ и 4-АЛКОКСИФЕНИЛУКСУСНЫХ КИСЛОТ

М. А. КАЛДРИКЯН и А. А. АРОЯН

Институт тонкой органической химии АН Армянской ССР

Поступило 27. XI 1963

Для сравнительной оценки противоопухолевых свойств синтезированы ацильные производные моно- и бис-β-хлорэтиламинов и этиленимина. Взаимодействием хлорангидридов 2-алкокси-4-бромбензойных кислот и 2,3-дигидробензофуран-2-карбоновой кислоты с бис-(β-хлорэтил) амином получены N,N-бис-(β-хлорэтил) амиды. Реакцией хлорангидридов 2-алкоксибензойных и 4-алкоксифенилуксусных кислот с этиленимином синтезированы этиленимиды. Последние действием хлористого водорода превращены в соответствующие β-хлорэтиламиды

Табл. 5, библ. ссылок 9.

Ранее нами был синтезирован ряд бис-(β-хлорэтил) аминов, содержащих ароматические системы [1]. Продолжением этих исследований является настоящая работа, поовященная синтезу ацильных производных алкилирующих соединений со следующими общими формулами:

Синтез подобных соединений даст возможность провести сравнительную оценку токсичности и противоопухолевых свойств при переходе от так называемых «двуруких» к «одноруким» азотипритам и этиленимидам.

Ацилированные производные бис-(β-хлорэтил) амина и, особенно, β-хлорэтиламина до сих пор мало изучены с точки зрения их биологических свойств. В опубликованных работах сообщается о синтезе и свойствах бис-(β-хлорэтил)- и β-хлорэтиламидов только некоторых алифатических и ароматических кислот [2].

Соединения типа I, II обычно получают действием хлористого тионила на оксиэтильные производные [3] или гидрохлорида бис-(β-хлорэтил) амина на хлорангидриды жарбоновых кислот [4]. Попытка подойти к синтезу амидов I, исходя из бис-(β-оксиэтил) - амидов соответствующих кислот, с последующим действием хлористого тионила не увенчалась успехом; при синтезе оксиэтиламидов получались вещества неопределенной структуры (возможно, смесь оксиэтиламида и эфира).

Поэтому синтез амидов I ооуществлен непосредственным введением в реакцию хлорангидридов 2-алкокси- и 2-алкокси-4-бромбензойных кислот с двумя эквивалентами бис-(β-хлорэтил) амина, полученного из его гидрохлорида действием нобольшого избытка 50%-ного водного раствора едкого кали.

Часть амидов I получаетоя в виде масел, хорошо перегоняющихся в вакууме, а остальная—в кристаллическом виде. Однако некоторые амиды I ($R = C_2H_5$, C_4H_9 ; R' = H), а также бис-(β -хлорэтил) амиды n-алкоксифенилуксуоных и бензофуран-2-карбоновой кислот не удалось выделить в кристаллическом виде или перегнать в вакууме.

Согласно некоторым литературным данным [5], амиды аналогичной спруктуры при кипячении в спиртовой или водноспиртовой ореде иногд в полностью изомеризуются в соответствующие гидрохлориды β-(хлорэтил) аминоэтиловых эфиров. Поэтому перекристаллизацию амидов I мы проводили из инертного растворителя, в частности из абсолютного бензола.

Соединения IV, V получены взаимодействием хлорангидридов 2алкоксибензойных и 4-алкоксифенилуксусных кислот с этиленимином в присутствии 10%-ного годного раствора едкого кали в ореде бензола [6].

$$R'-C$$
 CI
 HN
 IV, V

Этиленимиды—слегка желтоватые или бесцветные жидкости, хорошо перегоняющиеся в вакууме. Они представляют самостоятельный биологический интерес, но могут служить и подходящими промежуточными продуктами для синтеза ацильных производных «одноруких» азотипритов. Известно, что азиридиновое кольцо очень чувствительно к жислогным реагентам и под действием последних быстро расщепляется. Неустойчивость азиридинового цикла сохраняется и в амидах IV, V. При пропускании сухого хлористого водорода в бензольный раствор IV, V в течение 3 минут происходит экзотермическая реакция с получением. β-хлорэтиламидов.

Некоторые β-хлорэтиламиды—кристаллические, остальные—маслообразные продукты, перегоняющиеся в вакууме без разложения.

В отличие от бис-(β-хлорэтил) амидов, β-хлорэтиламиды не чувствительны к амидоэфирной перегруппировке, хотя есть указание о ее возможности при продолжительном нагревании β-хлорэтиламидов в воде [7].

Экспериментальная часть

2-Алкокси- и 2-алкокси-4-бромбензойные кислоты. Получены по опи- санному в литературе способу [3].

4-Алкоксифенилуксусные кислоты. Синтезированы омылением со--

ответствующих 4-алкоксибензилцианидов [9].

Хлорангидриды 2-алкокси-, 2-алкокси-4-бромбензойных кислот и 4-алкоксифенилуксусных кислот. Получены нагреванием соответствующих кислот с хлористым тионилом в абсолютном бензоле [9].

N,N-бис-(β-Хлорэтил) амиды 2-алкокси-, 2-алкокси-4-бромбензойных и 2,3-дигидробензофуран-2-карбоновой кислот. К смеси 2,8 г (0,02 моля) N,N-бис-(β-хлорэтил) амина в 30 мл абсолютного хлороформа при охлаждении прикапывают 0,01 моля хлорангидридл кислоты в 20 мл абсолютного хлороформа. Смесь нагревают в течение 3—4 часов. Отфильтровывают осадок, промывают абсолютным хлороформом. После отгонки хлороформа остаток в некоторых случаях перегоняют в важууме, в остальных—при прибавлении абсолютного эфира—кристаллизуется (табл. 1). Выход N,N-бис-(β-хлорэтил) амида 2,3-дигидробензофуран-2-карбоновой кислоты 89,2%; т. пл. 77—78°. Найдено %: N 4,87; С1 24,45. С13H₁5Cl₂NO₂. Вычислено %: N 4,86; С1 24,60.

R'OR CON(CH₂C H₂GI)₂

Таблица 1'

							Α	нал	1 11 3,	0/0	
		0,0	т	т	W	1	1		21	E	Br Branc-
R	R'	a l	Т. кип., °С/м.и	Т. пл.,	.Молекулярная формула	웊	8	НО	7	HO	4
		ыхо				найдено	ычисено	найдено	HO HO	айдено	P 0
		m	100			E	Вы	H	ВЫЧ	H.	вь
CH,	Н	50.0	195—199/2	_	C ₁₂ H ₁₃ Cl ₂ NO ₂	4.65	5.07	25.37	25 67		
C ₃ H ₇	Н	80,0	-111	54-55	C14H19C12NO2	2				_	_
C ₄ H ₉	Н	64,5	212-214/2	-	C15H21CI2NO2					_	_
CH ₃	Вг	70,0	-	54-55	C12H14Cl2BrNO2	3,90	3,96	19,56	20,00	22,94	22,80
C ₂ H ₅	Br	72,2	_	81—82	C13H16Cl2BINO2	3,81	3,79	19,53	19,21	21,45	21,67
C ₃ H ₇	Br	80,0	235—238/1	-	C, 4H, 18C1 2 UrNO 2	3,45	3,67	18,65	18,54	20,63	20,88
	1	1 (

Этиленимиды 2-алкоксибензойных и 4-алкоксифенилуксусных кислот (IV, V). К смеси 6 мл 10%-ного водного раствора едкого кали,

Армянский химический журнал. XXIII, 10-4.

R	- 10.12	and the same		PS-2-34		MI	R _D		Ан	л н	3,	0/0	47	9. 13.
	%				*		9		C	- I	1	. 1	V	3 91
	Выход, о	Т. кип., °С/ <i>мм</i>	Молекулярная формула	d ²⁰	n _D ²⁰	найдено	вычислено	найдено	вычис-	найдено	вычис-	найдено	вычис-	R _f * 0,48** 0,37 0,40 0,41 0,49
СН	50,0	145—146/1	C10H12NO2	1,1548	1,5661	50,08	48,04	67,50	67,40	6,02	6,75	8,02	7,86	0,48**
C ₂ H ₅	70.6	151—152/1	C11H14NO2	1,1256	1,5570	54,69	52,66	69,36	68,72	7,09	7,39	6,98	7,28	0,37
C _a H _e	50,0	154-156/1	C12H15NO2	1,1051	1,5468	58,88	57,28	70,52	70,21	7,00	7,36	6,53	6,82	0,40
u80-C3H7	63,4	125-126/1	C12H15NO2	1,0831	1,5480	59,64	57,28	70,24	70,21	7,60	7,36	6,61	6,82	0,41
C ₄ H ₉	78,1	139—140/1	C13H17NO2	1,0784	1,5380	63,60	61,90	70,90	71,20	8,13	7,81	6,00	6,38	0,49
изо-С ₄ Н ₉	78,0	140—141/1	C ₁₃ H ₁₇ NO ₂	1,0778	1,5392	63,54	61,90	71,50	71,20	7,79	7,81	6,69	6,38	0,55

* Система: диэтиловый эфир — петролейный эфир (1:1).
** Та же система (2:1). Носитель — окись алюминия II степени активности.

R						MI	q ⁵		Ана	лн	3,	0/0	-	
	0/0				1		5	C		ŀ	i		N	R _f
	Выход, Ф	Т. кнп., °С/мм	Молекулярная формула	d ²⁰	d ₄ ²⁰ n _D ²⁰	найдено	вычислено	найдено	вычис-	найдено	вычис-	нийдено	вычис-	
CH ₃	63,6	163 – 164/3	C ₁₁ H ₁₃ NO ₂	1,0588	1,5328	54,23	52,66	69,40	69,08	7,15	6,65	7,09	7,32	0,47
C ₃ H ₅	51,2	158—160/2	C12H15NO2	1,0895	1,5360	58,75	57,28	70,53	70,21	8,02	7,36	6,55	6,82	0,48
C ₃ H ₇	60,0	165—167/1	C13H17NO3	1,0767	1,5302	63,28	61,90	70,57	71,20	8,25	7,81	6,39	6,38	0,50
230-C₃H₁	51,2	165-167/2	C13H17NO2	1,0611	1,5285	63.66	61,90	71,25	71,20	8,00	7,81	6,07	6,38	0,56
C,H,	50,0	159-161/1	C14H19NO,	1,0552	1,5240	67,65	66,52	72,35	72,07	8,41	8,20	5,73	6,00	0,59
изо-C ₄ H,	49,0	160 - 162/1	C14H19NO2	1,0610	1,5260	68,55	66,52	72,28	72,07	8,11	8,20	6,33	6,00	0,52

^{*} Система: эфир – петролейный эфир (3:1), носитель — окись алюминия II степени активности.

1,4 мл (0,027 моля) этиленимина и 40 мл бензола при охлаждении льдом и перемешивании прикапывают 0,02 моля хлорангидрида в 15 мл абсолютного бензола. Реакционную массу перемешивают при комнатной температуре в течение 2 часов. Отделяют водный слой от бензольного, последний промывают 1%-ным раствором едкого натра, затем водой и высущивают над безводным сернокислым натрием. После удаления бечвола остаток перегоняют в вакууме (табл. 2 и 3).

OR CONHCH2CH2CI

Таблица 4

			11- 11- 1		Ана.	и з,	0/a	2
	%	_		1	٧	_ C	:1	
R	Выход, •	Т. кип., °С/мм	Молекулярная формула	найдено	вычис-	найдено	вычис-	R _f *
CH ₃	51,5	168—170/2	C ₁₀ H ₁₃ CINO ₂	6,48	6,55	16,37	16,59	0,42
C ₂ H ₅	52,0	170-172/2	C11H14CINO	6,12	6,15	15,25	15,57	0,44
C ₃ H ₇	60,0	165—167/1	C13H15CINO2	5,50	5,79	14,30	14,66	0,51
<i>изо-</i> С ₃ Н ₇	50,0	165—167-1	C ₁₂ H ₁₆ CINO ₂	5,78	5,79	14,86	14,66	0,51
C ₄ H ₉	60,1	170—172/1	C13H18CINO2	5,46	5,47	14,14	13,86	0,54
изо-С4Н,	71,0	177—178/1	C ₁₃ H ₁₈ CINO ₂	5,38	5,47	14,00	13,86	0,54

^{*} Система: эфир-петролейный эфир (2 л 1), носитель — окись алюминия II степени активности.

RO CH₃CONHCH₃CH₂CI

Тиблица 5

200				Santa.	Анал	из, ⁰ /	c	
	%	15000		1	V		CI	
R	Выход, Ф	т. пл., °С	Молекулярная формула	найдено	вычис-	найдено	вычис-	R _f *
СН	53,5	102—103	C ₁₁ H ₁₄ CINO ₂	6,45	6,15	16,00	15,57	0,62
C ₂ H ₅	54,1	75—77	C12H16CINO2	5,65	5,79	14,68	14,66	0,50
C ₃ H ₇	56,0	101-102	C ₁₃ H ₁₈ CINO ₂	5,53	5,47	13,80	13,86	0,49
изо-C ₃ H ₁	80,0	51-52	C ₁₃ H ₁₈ CINO ₂	5,27	5,47	13,86	13,86	0,48
C ₄ H ₉	65,0	100—101	C14H20CINO	5,40	5,19	13,48	13,14	0,51

Система: эфир — метанол (20:1), носитель — окись алюминия II степени активности.

N-(β-Хлорэтил) амиды 2-алкоксибензойных и 4-алкоксифенилуксусных кислот (II, III). В раствор 0,01 моля этиленимида IV, V в 30 мл абсолютного бензола пропускают ток сухого хлористого водорода в тече-

ние 3 минут. Происходит экзотермическая реакция, по окончании которой смесь промывают водой, бензольный слой высушивают над безводным сернокислым натрием. После отгонки бензола остаток кристаллизуется или перегоняется в вакууме (табл. 4и 5).

2-ԱԼԿՕՔՍԻ-, 2-ԱԼԿՕՔՍԻ-4-ԲՐՈՄԲԵՆԶՈՑԱԿԱՆ ԵՎ 4-ԱԼԿՕՔՍԻՖԵՆԻԼՔԱՑԱԽԱԹԹՈՒՆԵՐԻ N,N-բիս-(β-ՔԼՈՐԿԹԻԼ) ԵՎ N-β-ՔԼՈՐԷԹԻԼԱՄԻԴՆԵՐ

Մ. Հ. ԿԱԼԴՐԻԿՑԱՆ և Հ. Ա. ՀԱՐՈՅԱՆ

Udhahaid

Հակաուռուցքային հատկությունները ուսումնասիրելու համար սինթեզված են մոնո- և բիս-β-քլորէթիլաժինների և էթիլենիժինի ացիլային ածանցյալներ։ Այդ նպատակով 2-ալկօքսի-, 2-ալկօքսի-4-բրոմբենզոյական թթուների, 2,3-դիհիդրոբենզոֆուրան-2-կարբոնաթթվի քլորանհիդրիդների և բիս-(β-քլոր-էթիլ)ամինի փոխազդմամբ ստացված են համապատասխան բիս-(β-քլորէթիլ)-ամիդներ։ 2-Ալկօքսիբենզոյական և 4-ալկօքսիֆենիլքացախաթթուների քլոր-անհիդրիդները ռեակցիայի մեջ են մտցված էթիլենիմինի հետ, կալիումի հիդ-րօքսիդի 10%-անոց ջրային լուծույթի ներկայությամբ։ Սինթեզված էթիլեն-իմիդները բլորջրածնի ազդմամբ փոխարկված են համապատասխան β-քլոր-էթիլամիդները

ЛИТЕРАТУРА

- А. А. Ароян, Б. Т. Гарибджанян, Г. М. Степанян, Арм. хим. ж., 20, 908 (1967);
 А. А. Ароян, Т. Р. Овсепян, Р. Г. Мелик-Оганджанян, В. В. Ледяев, там же, 22, 406 (1969).
- 2. R. Preusmann, Arzneimittelforsch., 8, 9 (1958); W. C. J. Ross, I. G. Wilson, J. Chem. Soc., 1959, 3616; H. Brintzinger, K. Pfannstiel, H. Koddenbuch, Ber., 82, 389 (1949); Т. С. Сафонова, С. И. Сергиевская, ЖОХ, 31, 1193 (1961); Л. Н. Воловельский, О. П. Васильевская, ЖОХ, 38, 42 (1968);
- 3. O. M. Friedman, A. M. Sellgman, J. Am. Chem. Soc., 70, 3082 (1948). E. R. H. Jones, W. Wilson, I. Chem. Soc., 1949, 547.
- 4. W. C. I. Ross, J. G. Wilson, J. Chem. Soc., 1959, 3616; Б. В. Курган, С. А. Гиллер, А. А. Грузе, ХГС, 1965, 11.
- 5. G. R. Pettit, M. R. Chamberland, Can. J. Chem., 44, 813 (1966); Т. С. Сафонова, С. И. Сергиевская, ЖОХ, 32, 1351 (1962).
- 6. G. R. Pettit, S. K. Gupta, P. A. Whithause, J. Med. Chem., 10, 692 (1967).
- 7. E. M. Fry, J. Org. chem., 14, 887 (1949).
- 8. А. А. Ароян, М. А. Ирадян, Н. С. Большакова, А. А. Арутюнян, Арм. жим. ж., 21, 328 (1968)
- 9. А. Л. Миджоян, О. Л. Миджоян, Н. Т. Оганджанян, ДАН Арм. ССР, 20, 5, 181 (1955); А. Л. Миджоян, О. Л. Миджоян, О. Е. Гаспарян, ДАН Арм. 21, 1, 33 (1955); А. Л. Миджоян, А. А. Ароян, Т. Р. Овсеяпи, Изв. АН Арм. ССР, ХН, 14, 157 (1961).