XXIII, № 1, 1970

УДК 547.415.1

НЕКОТОРЫЕ СИНТЕЗЫ НА ОСНОВЕ 4-АЛКОКСИБЕНЗИЛ-И 4-АЛКОКСИФЕНИЛАМИНОВ

м. А. ИРАДЯН, Л. В. МИНАСЯН и А. А. АРОЯН

Институт тонкой органической химии АН Армянской ССР

Поступило 1 VIII 1969

С целью испытания антигистаминных свойств синтезированы тетразамещенные этилен- и пропилендиамины, содержащие 4-алкоксифенильные и 4-алкоксибензильные радикалы и производные имидазолина.

Табл. 3, библ. ссылок 9.

На примере неоантергана [1] и неогетерамина [2] показано, что введение метоксильного остатка в ароматические радикалы тетразамещенных этилендиаминов повышает антигистаминную активность. В литературе нет данных о синтезе соединений, содержащих алкоксильные группы в обоих ароматических кольцах. Исходя из этого было интересно испытать на антигистаминную активность тетразамещенные этилендиамины I, содержащие небольшие алкоксильные радикалы в обоих бензольных ядрах. Чтобы проследить за изменением активности с увеличением числа метиленовых групп боковой цепи, получено также производное пропилендиамина II.

Помимо этого, синтезированы соединения III и IV, относящиеся к той группе антигистаминных веществ, у которых боковая дналкиламино-этильная цепь заменена 2-имидазолином.

Соединения III являются алкоксильными производными антигистаминного препарата антистина — 2-(N-фенил-N-бензиламино)метилимидаволина [3].

Соединения I синтезированы конденсацией N-4-алкоксибензил-4'алкоксифениламинов V с диалкиламиноэтилхлоридами в присутствии

амида натрия в среде абсолютного бензола.

RO
$$CH_2$$
+ CICH₂CH₃NR₂ $NaNH_2$

R'O NH

Исходные вторичные амины V получены взаимодействием 4-алкоксибензилхлоридов [4] с 4-алкокспанилинами. При хроматографировании в тонком слое окиси алюминия тетразамещенные этилендиамины I и вторичные амины V дают одно пятно. Система растворителей: абсолютный эфир-петролейный эфир, 2:1 и 1:1.

Тетразамещенный пропилендиамин II синтезирован по схеме:

4-Метоксибензил-4'-метоксифениламин конденсируется с акрилонитрилом в среде уксусной кислоты и дает VI с 70% выходом. Восстановлением β-цианэтильного производного VI алюмогидридом лития в среде абсолютного эфира получен замещенный пропилендиамин VII. По реакции Эшфайлера [3], действием на VII муравьиной кислоты и формалина синтезировано II с 40,4% выходом.

2-Имидазолины III получены взаимодействием вторичных аминов V с гидрохлоридом 2-хлорметилимидазолина в абсолютном этаноле

Они представляют собой белые кристаллические вещества, плохо растворимые в метаноле, не растворимые в воде и эфире.

11 + 11

Гидрохлорид 2-хлорметилимидазолина получен по прописи Кларера и Уреха [6] с выходом в $32^{0}/_{0}$.

$$CICH_{2}CONH_{2} \xrightarrow{P_{2}O_{5}} CICH_{2}CN \xrightarrow{C_{2}H_{5}OH, HCI} CICH_{2}C \xrightarrow{OC_{2}H_{5}} \xrightarrow{H_{1}NCH_{2}CH_{2}NH_{2}} VIII$$

Соединение IV получено взаимодействием гидрохлорида IX и безводного этилендиамина в среде абсолютного этанола; выход 24,5%.

VI
$$C_3H_3OH$$
, HCI CH_3O CH_2 CH_3O CH_2 $CH_2CH_2CH_2C$ OC_2H_5 OC_2H_5

Гидрохлорид этилового иминоэфира N-4-метоксибензил-N-4'-метоксифенил-B-аминопропионовой кислоты IX получен действием на эквимолекулярную смесь нитрила VI и абсолютного этанола сухим хлористым водородом до насыщения в среде абсолютного эфира с выходом 45,4%0.

Экспериментальная часть

4-Алкоксибензил-4'-алкоксифениламины (V). Смесь 0,8 моля 4-алкоксианилина [9] и 0,2 моля 4-алкоксибензилхлорида нагревают 6—8 часов (в случае 4-анизидина в качестве среды взято 150 мл абсолютного бензола). Затем добавляют 100 мл 10%-ного едкого натра. Выделившийся маслянистый слой отделяют, а водный экстрагируют эфиром. Последний присоединяют к основному продукту и высушивают над прокаленным сернокислым натрием. После отгонки растворителя остаток перегоняют в вакууме (табл. 1).

RO CH ₂ NH OR'												
R	R'	Beixol, 0/0	Т. кип., °С/леле	Т. пл., °С	Молек	пайденс	вычис-	найдено	зычис-	айдено	Вычис-	Т. пл. гидрэ-
CH ₃ * C ₂ H ₅ CH ₃ C ₂ H ₅	C.H.	70.4	189—191/1	64 - 65	C ₁₅ H ₁₇ NO ₂ C ₁₆ H ₁₉ NO ₃ C ₁₆ H ₁₉ NO ₂ C ₁₇ H ₂₁ NO ₂		1, 1,07	441	7,47	5,40	5.44	148 - 149

^{*} По литературным данным [7], т. пл. 97—99°, [8] т. пл. 94—95°

N-4-Алкоксибензил-N-4'-алкоксифенил-N', N'-диалкилэтилендиамины (I). К смеси 60 мл абсолютного бензола, 6,2 г (0,16 моля) измельченного амида натрия, 0,06 моля 4-алкоксибензил-4'-алкоксифениламина при перемешивании прикапывают 0,1 моля свежеперегнанного диалкиламиноэтилхлорида. Смесь перемешивают и нагревают на водяной бане 8—10 часов. По охлаждении из капельной воронки осторожно приливают 30 мл воды, отделяют бензольный слой, а водный экстрагируют бензолом. Бензольные экстракты высушивают над прокаленным сернокислым натрием, отгоняют растворитель и остаток перегоняют в вакууме (табл. 2).

N- β - μ ианэтил-N-4-метоксибензил-N-4-метоксифениламин (VI). Смесь 12,1 г (0,05 моля) N-4-метоксибензил-N-4-метоксифениламина, 5,3 г (0,1 моль) акрилонитрила и 15 мл уксусной кислоты нагревают на сплаве Вуда при 120—125° в течение 6—7 часов. Отгоняют избыток акрилонитрила и уксусной кислоты, остаток перегоняют в вакууме. Выход 10,3 г (70%); т. кип. 224—226°/1 мм; d_4^{20} 1,1453; n_D^{20} 1,5870. М R_D найдено 86,97, вычислено 86,62. Найдено %: С 73,25; H 7,02; N 9,22. $C_{18}H_{20}N_2O_2$. Вычислено %: С 72,95; H 6,80; N 9,46.

N-4-Метоксибензил-N-4-метоксифенилпропилендиамин (VII). К 5,2 г (0,13 моля) литийалюмогидрида в 100 мл абсолютного эфира при охлаждении прикапывают 20 г (0,067 моля) $N-\beta$ -цианэтил-N-4-метоксифениламина в 150 мл абсолютного эфира. Смесь нагревают в течение 24 часов, после чего добавляют 30 мл воды, отделяют эфирный слой и сущат над прокаленным сернокислым натрием. После отгонки растворителя остаток перегоняют в вакууме. Выход 13 г (64,6%); т. кип. 215-216% мм; d_4^{20} 1,1160; n_D^{20} 1,5908. М R_D найдено 91,30, вычислено 90,29. Найдено %: С 71,84; H 8,17; MR_D найдено 91,30, вычислено %: С 71,96; H 8,05; N 9,32.

N-4-Метоксибензил - N-4'-метоксифенил-N', N'-диметилпропилендиамин (II). К 9,2 мл $85^0/_0$ -ной муравьиной кислоты при охлаждении приливают 12 г (0,04 моля) N-4-метоксибензил-N-4'-метоксифениппропилендиамина и затем 17,3 мл формалина. Кипятят 8 часов,
добавляют 42 мл 4 н соляной кислоты, отгоняют большую часть растворителя и остаток обрабатывают $30^0/_0$ -ным раствором едкого натра
створителя и остаток обрабатывают $30^0/_0$ -ным раствором и эфирные выдо щелочной реакции. Дважды экстрагируют эфиром и эфирные вытяжки сущат над прокаленным сернокислым натрием. После отгонки
тяжки сущат над прокаленным сернокислым натрием. После отгонки
растворителя остаток перегоняют в вакууме. Выход 5,2 г $(40^0/_0)$;
растворителя остаток перегоняют в вакууме. Выход 5,2 г $(40^0/_0)$;
т. кип. $219-221^\circ/1$ мм; d_4^{30} 1,0772; n_0^{20} 1,5696. М R_D найдено 99,98, вычислено 100,04. Найдено $0/_0$: С 72,94; Н 8,61; N 8,31. $C_{20}H_{28}N_2O_2$. Вычислено $0/_0$: С 73,13; Н 8,58; N 8,52.

Гидрохлориды 2-(N-4-алкоксибензил-4'-алкоксифениламино)мепилимидазолинов (III). Смесь 0,01 моля 4-алкоксибензил-4'-алкоксифениламина, 1,55 г (0,01 моля) гидрохлорида 2-хлорметилимидазолина и 20 мл абсолютного этанола нагревают на водяной бане в течение и 20 мл абсолютного этанола часть растворителя и добавляют 50 мл 7—8 часов. Затем отгоняют часть растворителя и добавляют 50 мл

CH,	₽
CH3 CH3 CH3 CH3 CH3	R
CH ₃	R"
67, 0 58, 4 66, 5 65, 0 59, 5 60, 3	Выход, ⁰ / ₀
199-201/1 203-205/1 206-208/1 206-208/1 208-210/1 204-206/1 208-210/1 209-211/1	Т. кип., °С/мм
C ₁₉ H ₂₆ N ₂ O ₂ C ₂₀ H ₂₈ N ₂ O ₂ C ₂₀ H ₂₈ N ₂ O ₂ C ₂₁ H ₃₀ N ₂ O ₂ C ₂₁ H ₃₀ N ₂ O ₂ C ₂₂ H ₃₂ N ₂ O ₂ C ₂₂ H ₃₂ N ₂ O ₂ C ₂₃ H ₃₄ N ₂ O ₂ C ₂₃ H ₃₄ N ₂ O ₂	Молекулярная формула
1,0662 1,0628 1,0540 1,0511 1,0507 1,0347 1,0423 1,0523	d ²⁰
1,5748 1,5678 1,5625 1,5618 1,5608 1,5542 1,5580 1,5531	30 m
94, 48 101,03 101,14 105,64 105,52 110,45 1110,27	наплено
95,43 100,04 100,04 104,66 104,66 109,28 109,28	вычислено
72, 27 72, 99 73, 36 73, 52 74, 33 74, 33	найдено
72,57 73,13 73,13 73,67 74,12 74,12 74,52	вычис-
8, 20 8, 64 8, 85 9, 04 9, 33 9, 33	найдено
8, 33 8, 59 8, 83 9, 04 9, 04	вычис-
8 52 8 49 8 25 8 40 8 12 8 18	найдено
8, 90 8, 53 8, 53 8, 53 8, 18 7, 85 7, 85	вычис-
129 — 130 125 — 126 128 — 129 118 — 119	Т. пл. гилро- хлорида,

ROCCH₂
ROCCH₃CH₃NR₂

Таблица 2

абсолютного эфира. Выпавшие кристаллы фильтруют и для удаления гидрохлорида непрореагировавшего амина промывают теплой (40-45°) водон (табл. 3).

Таблица 3

1	R'	Buxon, 0/0	Т. пл., °С	Молекулярная формула	А нализ. 0/0								
R					(I	1	N		CI		
					0	A.	01	5. 1	ОН		0		
					наплено	вычис	ілепо	вычис лено	найедно	0	найдено	Вычис	
					123	вы	Hai	Вычн	ııai	BIN	най	RENTE	
	100	1											
CH ₂ C ₂ H ₅ C ₂ H ₅	CH ₃ C ₂ H ₅		210 211	C19H24CIN3O2	63,22	63,06	6,47	6,68	11,33	11,61	9,94	9,79	
			215-216		63,57	63,90	6,67	6,97	11,56	11,19	9,17	9,43	
			229-230		63,91	63,90							
		35,2202-204		64,39	64,68	7,61	7,23	10,51	10,71	8,72	9,09		
		00,2	202						- 3				

Гидрохлорид этилового иминоэфира β-(N-4'-метоксибензил-N--4'-метоксифенил)аминопропионовой кислоты (ІХ). В смесь 7,1 г (0,С24 моля) N-β-цианэтил-N-4-метоксибензил-N-4 -метоксифениламина, 1,1 г (0,024 моля) абсолютного этанола и 20 мл абсолютного эфира при охлаждении водой пропускают ток сухого хлористого водорода до насыщения. Раствор оставляют на ночь. Затем отгоняют часть растворителя и к остатку добавляют абсолютный ацетон. Выпавшие кристаллы фильтруют и перекристаллизовывают из абсолютного ацетона. Выход 4,1 г (45,4%), т. пл. 140—141 (с разложением). Найдено °/₀: С 63,83; Н 6,97; N 7,65. С 20 Н N O C I. Вычислено °/₀: С 63,40;

H 7,19; N 7,40.

Гидрохлорид 2-(N·4-метоксибензил-N-4'-метоксифениламино)этилимидазолина (IV). Смесь 3,7 г (0,01 моля) гидрохлорида этилового иминоэфира 3-(N-4-метоксибензил-N-4'-метоксифенил)аминопропноновой кислоты, 0,6 г (0,01 моля) безводного этилендиамина и 20 мл абсолютного этанола нагревают в течение 6—8 часов. Затем в смесь пропускают ток сухого хлористого водорода до кислой реакции. Гидрохлорид этилендиамина отфильтровывают, выпаривают часть фильтрата, выпавший осадок отфильтровывают и перекристаллизовывают из абсолютного этанола. Выход 0,9 г (24,5%); т. ил. 179—180°. Найдено ⁰/₀: С 63,84; Н 6,63; N 11,30; С1 9,80. С₂₀Н₂₆N₃O₂С1. Вычислено %: С 63,90; Н 6,97; N 11,19; С1 9,43.

ՄԻ ՔԱՆԻ ՍԻՆԹԵԶՆԵՐ 4–ԱԼԿՕՔՍԻՐԵՆՉԻԼ – Իվ 4–ԱԼԿՕՔՍԻՖԵՆԻԼԱՄԻՆՆԵՐԻ ՀԻՄԱՆ ՎՐԱ

Մ. Ա. ԻՐԱԴՅԱՆ, Լ. Վ. ՄԻՆԱՍՅԱՆ և Հ. Ա. ՀԱՐՈՅԱՆ

U d din din c d

արմարանվաց բնինրը» ը տեստինըրդվույրըն և իսլիդամուն ացարմեանրի։ [գրոնվաց ըր դ֊անիօծոինըրընկը բ դ֊անիօծոիֆբրին իսլներ տահուրաիսն ճառա» Հակաչիսատղիրանիր չատիսներություններ և իսլիդամուն ացարմեանրի։

ЛИТЕРАТУРА

- D. Bovet, R. Horclois, F. Walthert, C. r. soc. biol., 138, 99 (1944); [C. A., 39, 3070* (1945)].
- 2. H. L. Friedman, A. V. Tolstoouhov, пат. США 2465,865 (1949); [С. А., 43, 62244d (1949)].
- 3. R. Meter, K. Bucher, Experientia, 2, 140 (1946); [C. A., 40, 51345 (1946)]: R. Meter, Ann. N. Y. Acad. Sci., 50, 1161 (1950); [C. A., 44, 8541b (1950)].
- 4. А. Л. Миджоян, А. А. Ароян, Научные труды ЕГУ, 36, 21 (1952).
- 5. W. Eschweitler, Ber., 38, 880 (1905).
- 6. W. W. Klarer, E. Urech, Helv. Chim. Acta, 27, 1762 (1944).
- 7. J. Cusic, пат. США 2,772,289 (1956); [С. А., 52, 1288b (1958)].
- 8. M. Julia, J. Igolen, Bull. soc. chim. France, 1962, 1056.
- 9. А. А. Ароян, М. А. Ирадян, Арм. хим. ж., 22, 140 (1969).