XXIII, № 1, 1970

УДК 541.49+543.544+546.881

ОПРЕДЕЛЕНИЕ СРАВНИТЕЛЬНОЙ УСТОЙЧИВОСТИ ЦИТРАТНОГО, ОКСАЛАТНОГО И ТАРТРАТНОГО КОМПЛЕКСОВ ВАНАДИЯ МЕТОДОМ ИОННОГО ОБМЕНА

Д. С. ГАЙБАКЯН и З. З. ТЕРМЕНДЖЯН

Ереванский государственный университет

Поступило 21 IV 1969

На основании исследования сорбции на сильнокислотном катионите КУ-2 в водородной форме изучена сравнительная устойчивость тартратных, цитратных и оксалатных комплексов ванадия (V) как в отсутствии, так и в присутствии лимонной, винной и щавелевой кислот.

По убывающей устойчивости комплексы ванадия располагаются в ряд: оксалатный — цитратный — тартратный.

Рис. 4, табл. 1, библ. ссылок 8.

При хроматографическом исследовании разделяемости элементов достаточно знать сравнительную устойчивость образующихся комплексных соединений с элементами.

Приведенные в литературе данные об устойчивости тартратного, цитратного и оксалатного комплексов ванадия получены различными методами и в разных условиях, что не позволяет сопоставить эти данные для выяснения сравнительной устойчивости названных комплексов.

В последнее время был предложен ионообменный метод определения сравнительной устойчивости комплексных соединений, отличающийся простотой и достаточной точностью [1, 2]. В предыдущем сообщении [3] этим методом нами исследовалась сравнительная устойчивость тартратного, цитратного и оксалатного комплексов молибдена. В настоящей работе описываются результаты определения сравнительной устойчивости комплексов ванадия.

Экспериментальная часть

В зависимости от кислотности растворов и в присутствии соответствующих лигандов ванадий может находиться как в катионной, так и в анионной форме. Для исследования процесса комплексообразования ионообменным методом применялся сильнокислотный монофункциональный катионит полимеризационного типа КУ-2.

Предварительную очистку катионита (фракция 0,25—0,5 мм) осуществляли многократной обработкой 2 м раствором соляной кислоты до полного удаления железа (проба на SCN⁻), после чего катионит промывали водой до нейтральной реакции. Раствор ванадата аммония готовили по методике, описанной в [4]; полученный раствор содержал 2 мг/мл ванадия. Растворы лигандов—лимонной, винной и щавелевой кислот готовили по точной навеске.

Для предварительного определения оптимальных условий сорбщии ванадия на катионите КУ-2 были поставлены опыты по исследованию процесса сорбции в статических условиях. Опыты проводили как в присутствии, так и в отсутствии лигандов при различной кислотности исследуемого раствора.

1,0 г воздушно-сухого катионита в Н-форме помещали в 50 мл плоскодонную колбу, добавляли около 25 мл дистиллированной воды и оставляли до набухания смолы. После декантации воды к набухшей смоле добавляли 25 мл раствора соляной кислоты, содержащего 1000 мкг ванадия. Раствор встряхивали около часа для установления сорбционного равновесия, после чего в аликвотной части определяли количество непоглощенного ванадия.

Полученные данные приведены на рисунке 1.

Как видно из рисунка 1, ванадий хорошо сорбируется из 0,0001— 0,05 и соляной кислоты. При концентрации соляной кислоты 0,5 и более резко снижается сорбция ванадия вследствие конкурирующего действия водородных ионоя.

Сорбция ванадия при указанной кислотности катионитом объясняется смещением равновесия в сторону образования катионов ванадила:

$$VO_3^- + 2H^+ = VO_2^+ + H_9O.$$

Исследование сорбции ванадия (анализ элюатов) при pH=2,1 в динамических условиях показало, что 2 мг ванадия количественно поглощаются катионитом (размер колонки 1×50 см).

В следующих опытах исследовалось влияние лимонной, винной и щавелевой кислот на сорбцию ванадия в статических условиях (рис. 2).

Как показывает рисунок 2, свыше 70% взятого ванадия поглощается катионитом из 0,001 М растворов указанных лигандов (рН 2,0— 3,0). Дальнейшее повышение концентрации последних приводит к уменьшению сорбции ванадия вследствие перехода катиона ванадия в соответствующий анионный комплекс.

Для определения относительной прочности этих комплексных соединений через колонку $(1 \times 50 \ cm)$ с катионитом со скоростью $1 \ mn/m$ ин пропускали дистиллированную воду, подкисленную до $pH = 2.1^*$, затем $25 \ mn$ исследуемого раствора такой же кислотности,

[•] Для приведения смолы к рабочей кислотности.

содержащего 2 мг ванадия. Фильтрат собирали в мерной колбе емкостью 25 мл. Смолу с поглощенным ванадием промывали последовательно двумя порциями по 10 мл дистиллированной воды, подкисленной до рН 2,1 0,01 М растворами лимонной, винной или щавелевой кислот. Фильтраты собирали по 10 мл и в каждой пробе определяли количество ванадия, перешедшего в раствор. Ванадий определяли фосфорновольфрамовой кислотой фотометрическим методом [6].

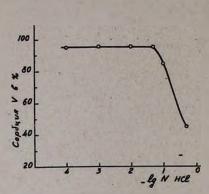


Рис. 1. Зависимость сорбции ванадия (V) от концентрации раствора соляной кислоты в статических условиях на КУ-2 в Н-форме.

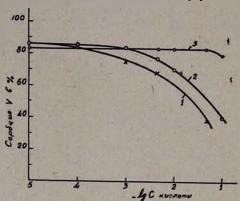


Рис. 2. Сорбция ванадия (V) на катионите КУ-2 из растворов: I — щавелевой; 2 — лимонной; 3 — винной кислот в статических условиях.

Данные, приведенные в таблице, показывают, что при pH=2,1 и концентрации лигандов 0,01 М ванадий вымывается из катионита только раствором щавелевой кислоты и то частично. Таким образом, относительно устойчивое анионное комплексное соединение ванадий образует с щавелевой кислотой.

Таблаца
Вымывание ванадия с катионита КУ-2
растворами щавелевой, винной и лимонной кислот 0.01 М концентрации при pH=2.1

Фракція М	Объем промывного раствора, мл	Вымывание ванадия растворами кислот, $^{0}/_{0}$		
		щавелевой	винной	лимонной
1	10	0	0	0
1 2 3 4 5 6 7 8	20 30	0 1	0	0
4	40	3,1 27,5	ŏ	Ö
5	50	27,9	ō	ŏ
6	60	8,1	0	0
7	70	5,1	0	0
8	80	4,58	0	0
9	90	4,56	0	0
Вымывается всего		80,4%	0 %	0 %

Известно, что полнота процесса комплексообразования в известной мере зависит от концентрации лигандов. Поэтому, с целью нахождения разницы в устойчивости анионных комплексных соединений ванадия с винной и лимонной кислотами, вымывание поглощенного ванадия с катионита проводили растворами указанных кислот концентраций 0,1 и 0,25 М. Данные, приведенные на рисунках 3 и 4, показывают, что по устойчивости соответствующие комплексные анионы ванадия располагаются в ряд: щавелевокислый—лимоннокислый—виннокислый.

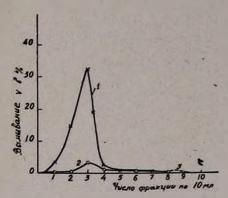


Рис. 3. Кривые вымывания ванадия (V) растворами: 1 — щавелевой; 2 — лимовной; 3 — винной кислот 0,1 мольной концентрации.



Рис. 4. Кривые вымывания ванадия (V) растворами: I — щавелевой; 2 — лимонной; 3 — вичной кислот 0,25 мольной концентрации.

Методом миграции ионов при ионофорезе на бумаге показано, что образующиеся комплексные ионы ванадия (V) с щавелевой, винной и лимонной кислотами являются анионами, что находится в полном согласии с данными работ [7, 8], авторы которых для аналогичного исследования использовали спектрофотометрический метод.

ՎԱՆԱԴԻՈՒՄԻ ԿԻՏՐՈՆԱԹԹՎԱՅԻՆ, ԹՐԹՆՋԿԱԹԹՎԱՅԻՆ ԵՎ ԳԻՆԵԹԹՎԱՅԻՆ ԿՈՄՊԼԵՔՍԱՅԻՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐԻ ՀԱՄԵՄԱՏԱԿԱՆ ԿԱՅՈՒՆՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ ԻՈՆԱՓՈԽԱՆԱԿՄԱՆ ԵՂԱՆԱԿՈՎ

Դ. Ս. ԳԱՑԲԱԿՑԱՆ և Ձ. Ձ. ՏԵՐՄԵՆԶՑԱՆ

Udhnhnid

Ուսումնասիրվել է կիտրոնաԹԹվի, դինսեԹԹվի ու ԹրԹնջկաԹԹվի ներկալուԹլամբ և բացակալուԹլամբ ստատիկ պալմաններում վանադիումի սորբցիան ուժեղ ԹԹվալին կատիոնափոխանակիչ KV-2-ով։

սալին միացութլունների համեմատական կալունությունը։ Նադիումի կիտրոնաթթվալին, գինեթթվալին և թրթնջկաթթվալին կոմպլեջսալին միացութլունների համեմատական կալունությունը։ ՖՖվունը—ժիջթՖՖվունը։ ըրհն մաստվանվուղ բը չբարքան իտեժով, ՖեՖըծիտԹՖվանիը— կիտևսըա-Շոա իտևսըսբՖիտը ըվտովորը վարամիսւղի իսղանբՖոտիքը ղիտնուՖ1սւը-

ЛИТЕРАТУРА

1. М. М. Сенявин, Л. Н. Тихонова, ЖНХ, 1, 2772 (1956).

2. В. К. Золотухин, О. М. Пасечник, Укр. хим. ж., 29, 335 (1963).

- 3. Д. С. Гайбакян, З. З. Терменджян, В. М. Тараян, Арм. хим. ж. (в печати).
- 4. А. И. Бусев, В. Г. Типцова, Б. И. Иванов, Практическое руководство по аналит. химии редких элементов, Изд. "Химия", Москва, 1966, стр. 182.
- 5. А. И. Бусев, В. Г. Типцова, В. М. Иванов, там же, стр. 172.

6. E. Sendell, Ind. Eng. Chem., Anal. Ed., 8, 336 (1936).

- 7. B. Ghosh, S. Moulik, K. Sengupta, P. Pal, J. Ind. Chem. Soc., 40, 509 (1963).
- 8. K. Chirondo, N. Toru, J. Chem. Soc. Japan, Pure Chem. Sec., 83, 708 (1962).