XXII, № 9, 1969

УДК 542.91+547.853.3-

производные пиримидина

XIII. ЗАМЕЩЕННЫЕ 5-(2'-АЛКОКСИ-5'-БРОМБЕНЗИЛ) ПИРИМИДИНЫ

А. А. АРОЯН и М. С. КРАМЕР

Институт тонкой органической химин АН Армянской ССР

Поступило 27 XII 1968

С целью исследования противоопухолевых свойств взаимодействием 2-алкокси-5-бромбензилацетоуксусных эфиров с тиомочевиной и солянокислым гуанидином синтезированы 2-меркапто- и соответственно 2-амино-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины и их производные.

Табл. 4, библ. ссылок 5.

Ранее [1, 2] был описан синтез различных производных пиримидина, содержащих в 5 положении алкоксибензильные группы.

Продолжая изучение соединений близкой структуры и основываясь на некоторых литературных данных [3, 4], мы нашли целесообразным синтезировать другие производные пиримидина, отличающиеся от предыдущих наличием в 5 положении 2-алкокси-5-бромбензильных групп (I).

 $R=CH_3$, C_2H_5 , C_3H_7 , $uso-C_3H_7$; R'=SH, SCH_3 , NH_2 , R''=OH, CI.

Исходными веществами для получения 2-меркапто- и 2-амино-4окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидинов служили 2-алкокси-5-бромбензилацетоуксусные эфиры, полученные взаимодействием ацетоуксусного эфира в присутствии этилата натрия с 2-алкокси-5-бромбензилхлоридами.

$$\begin{array}{c}
OR \\
CH_2CO_2C_2H_5 \\
COCH_3
\end{array}
\xrightarrow{C_2H_2ON_8}
\begin{array}{c}
OR \\
CH_2CHCO_2C_2H_5 \\
COCH_3
\end{array}$$

Синтез последних был осуществлен хлорметилированием 4-алкоксибромбензолов в среде хлороформа действием параформальдегида и: хлористого водорода в присутствии безводного хлористого цинка. Взаимодействием II с тиомочевиной в присутствии тройного количества метилата натрия были синтезированы 2-меркапто-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (III) — белые или светложелтые кристаллические вещества, не растворяющиеся в воде и в органических растворителях.

$$S = C \xrightarrow{NH_2} + II \xrightarrow{CH_0ON_0} HS \xrightarrow{OH} CH_2 \xrightarrow{OR} HS$$

$$III$$

Действием йодистого метила в присутствии едкого кали в среде метанола на III были получены 2-метилмеркапто-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (IV). Реакция осуществлена также в водной среде с одинаковыми результатами.

$$III + CH_3J \xrightarrow{KOH} CH_3S \xrightarrow{OH} CH_3 \xrightarrow{OR} CH_3$$

Введением 2-алкокси-5-бромбензилацетокуксусных эфиров в реакцию с солянокислым гуанидином в среде этилата натрия синтезированы с небольшими выходами 2-амино-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (V).

При осаждении 2-аминопиримидинов из растворов их натриевых солей уксусной кислотой получаются маслообразные вещества, кристаллизующиеся лишь после добавления небольшого количества втилового спирта.

$$H_3NC \stackrel{NH}{\underset{NH_3}{\longleftarrow}} + II \xrightarrow{C_3H_3ON_4} \xrightarrow{H_2N} OH CH_2 \stackrel{OR}{\underset{N}{\longleftarrow}} CH_2 \stackrel{OR}{\underset{Br}{\longleftarrow}}$$

Дальнейшие исследования сводились к превращению 4-оксипиримидинов в 4-хлорпроизводные. Непосредственно из 2-меркапто-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидинов соответствующие хлориды получить не удалось. А из 2-метилмеркаптопиримидинов нагреванием со свежеперегнанной хлорокисью фосфора были получены 2-метилмеркапто-4-хлор-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (VI).

$$\text{-IV} + \text{POCI}_3 \longrightarrow \text{CH}_3 \text{CH}_2 \text{CH}_3 \text{Br}$$

Обработка реакционной массы проведена двояко: или после отгонки избытка хлорокиси фосфора остаток выливался на измельченный лед и на следующий день отфильтровывались кристаллы хлорпиримидина, или маслянистый остаток экстрагировался эфиром и после удаления последнего выпадали кристаллы. В последнем случае получался более очищенный продукт.

2-Амино-4-хлор-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (VII) были также получены действием на соответствующие оксипиримидины хлорокисью фосфора.

$$V + POCI_3 \longrightarrow H_2N \longrightarrow CH_2 CH_3 OR$$

$$VII$$

Экспериментальная часть *

2-Алкокси-5-бромбензилхлориды. Получены по описанному в литературе способу [5]—взаимодействием *п*-алкоксибромбензолов с параформальдегидом и хлористым водородом в присутствии хлористого цинка.

2-Алкокси-5-бромбензилацетоуксусные эфиры (II). К смеси 52 г (0,4 моля) ацетоуксусного эфира и 100 мл абсолютного этанола постепенно прибавляют 4,6 г (0,2 г-ат.) натрия. По растворении последнего к смеси по каплям приливают 0,2 моля 2-алкокси-5-бромбензил-хлорида. Реакционную смесь нагревают при перемешивании на водяной бане 20 часов, после чего отгоняют растворитель, а к остатку прибавляют немного воды. Выделившийся маслянистый слой отделяют от водного, а последний экстрагируют эфиром. Эфирные вытяжки присоединяют к основному слою и высушивают над прокаленным сульфатом натрия. После отгонки эфира остаток перегоняют в вакууме (табл. 1).

2-Меркапто-4-окси-5-(2'-алкокси-5'-бромбензил) - 6-метилпири-мидины (III). К метилату натрия, приготовленному из 150 мл метанола и 6,9 г (0,3 г-ат.) натрия, прибавляют последовательно 7,6 г (0,1 моля) тиомочевины и 0,1 моля 2-алкокси-5-бромбензилацетоуксусного эфира. Реакционную смесь нагревают при перемешивании 6—8 часов. После отгонки растворителя остаток растворяют в 50 мл кипящей воды и осторожно подкисляют ледяной уксусной кислотой. Выпавшие кристаллы отфильтровывают, промывают несколько раз холодной водой и высушивают. Очистку полученных веществ производят промыванием горячим метанолом (табл. 2).

2-Метилмеркапто-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (IV). 0,03 моля 2-меркапто-4-окси-5-(2'-алкокси-5'-бром-

^{*} В проведении отдельных этапов эксперимента принимала участие Бабаян М. С.

Таблица 1

	Выход, 0/0	Т. кип., °С/ <i>мм</i>	Т. пл., °С	Молекулярная d¾ формула d¾	420	п ²⁰	MR _D			Ан	ал	и з, ⁰ / ₀		
R							0	ено	С		H		Br	
					u ₄		найдено	вычисл	найдено	вычис-	найдено	вычис-	найдено	вычис-
СН	75,5	177—178/1	_	C14H17BrO4	1,3800	1,5411	74,78	74,32	51,40	51,07	5,50	5,20	24,03	24,27
C ₂ H ₅	69,7	185—187/1	54-56	C15H19BrO4	_	_	_	_	52,73	52,48	5,85	5,58	23,50	23,28
C ₃ H ₇	66,8	194-196/1	1-0	C ₁₆ H ₂₁ BrO ₄	1,3016	1,5282	84,37	83,56	54,02	53,79	6,03	5,93	22,35	22,37
изо-С _э Н _т	88,2	198—199/1	-	C ₁₆ H ₂₁ BrO ₄	1,3154	1,5278	83,31	83,56	53,00	53,79	6,23	5,93	22,51	22,37

бензил)-6-метилпиримидина нагревают с 2,5 г (0,045 моля) едкого кали в 45 мл метанола и 4,2 г (0,03 моля) йодистого метила на водяной бане в течение 10-15 минут. К охлажденной смеси прибавляют воду, выпавший обильный осадок отсасывают и перекристаллизовывают из этанола (табл. 3).

Таблица 2

'					А н	ал	и з, °/0			
	%			N		S		Br		
R 	Выход,	Т. пл., °C	Молекулярная формула	найдено	вычис-	найдено	вычис-	найдено	вычнс-	
CH ₃	66,7	272—273	C13H13B1N2O2S	8,29	8.21	8,94	9,39	23.82	23,42	
C ₂ H ₅	66,2	238-240	C14H15BrN2O2S	7,62	7,89	9,43	9,02	22,29	22,49	
C ₃ H ₇	62,5	205-206	C15H17BrN2O2S	7,49	7,59	8,40	8,68	21,38	21,64	
изо-С ₃ Н ₇	67,7	223—225	C15H17B1N2O2S	7,28	7,59	8,32	8,68	21,32	21,64	

Таблица 3

R				Анализ, %							
	%			N		S		Br			
	Выход,	Т. пл., °C	Молекулярная формула	найдено	вычис- лено	найдено	вычнс-	найдево	вычис-		
СНа	87,8	240—242	C14H15BrN2O2S	7,40	7,89	9,35	9,02	22,30	22,49		
C ₂ H ₅	84,5	187—188	C,5H,7BrN,O,S	7,80	7,59	9,02	8,68	22,00	21.64		
C ₃ H ₇	70,0	230—231	C16H19BrN2O2S	7,77	7,31	8,82	8,37	20,54	20,85		
изо-С ₃ Н ₇	88,1	191—192	C18H19BrN2O2S	7,62	7,31	8,40	8,37	20,96	20,85		
		200									

2-Амино-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидины (V). К этилату натрия, приготовленному из 350 мл этилового спирта и 9,2 г (0,4 г-ат.) натрия, прибавляют 19,1 г (0,2 моля) солянокислого гуанидина и 0,2 моля 2-алкокси-5-бромбензилацетоуксусного эфира. Смесь нагревают при перемешивании 2—3 часа. После отгонки растворителя остаток растворяют в 50 мл кипящей воды и осторожно подкисляют ледяной уксусной кислотой. Вещество осаждается в виде маслянистого слоя и лишь после добавления этанола закристаллизовывается. Перекристаллизацию проводят из смеси уксусной кислоты и воды (2:1) (табл. 4).

Таблица 4

	1.0	Maria			A	H	a	л и	3,	0/0	
A TOTAL		BAR E	Молекулярная формула	C			H	N		Br	
R	Выход %	Т. пл., °С		найдено	вычис-	найдено	вычис-	найдено	вычис-	найдено	вычис-
		>280	C13H14B1N3O2	48,58	48,41	4,28	4,35	12,63	12,96	24,35	24,65
C,H,	60,6	235 — 236	C14H14BrN3O2	50,19	49,72	5,16	4,77	12,03	12,42	24,06	23,63
C ₃ H ₄	58.8	220-222	C15H18BrN3O3	51,20	51,15	5,40	5,15	11,60	11,93	22,80	22,66
изо-С _а Н ₁	41,8	225-226	C ₁₅ H ₁₈ BrN ₃ O ₂	51,14	51,15	5,60	5,15	11,56	11,93	22,30	22,66
•											

2-Метилмеркапто-4-хлор-5-(2'-алкокси-5'-бромбензил)-6-метил-пиримидины (VI). Смесь 0,02 моля 2-метилмеркапто-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидина и 12,2 г (0,08 моля) свежеперегнанной хлорокиси фосфора нагревают при температуре кипения последней в течение 5—6 часов с обратным холодильником. Отгоняют избыток хлорокиси фосфора, остаток выливают на лед и экстрагируют эфиром. Эфирные экстракты промывают 5%-ным раствором едкого натра, водой и высушивают над безводным сульфатом натрия. После упаривания эфира осаждается кристаллическое вещество, перекристаллизовывающееся из абсолютного этанола. Выход 2-метилмеркапто-4-хлор-5-(2'-метокси-5'-бромбензил)-6-метилпиримидина 89,1%, т. пл. 108—109°. Найдено % 17,55; S 8,35. С 14 Н 14 ВгС IN 2 ОS. Вычислено % 17,49; S 8,58.

Выход 2-метилмеркапто-4-хлор-5-(2'-этокси-5'-бромбензил)-6-метилпиримидина 85,7%, т. пл. 98—100°. Найдено %: N 7,56; S 8,05. С₁₅Н₁₆BrClN₂OS. Вычислено %: N 7,22; S 8,27.

2-Амино-4-хлор-5-(2'-алкокси - 5'-бромбензил)-6-метилпиримидины (VII). Смесь 0,02 моля 2-амино-4-окси-5-(2'-алкокси-5'-бромбензил)-6-метилпиримидина и 12,2 г (0,08 моля) хлорокиси фосфора нагревают при 120° 3—4 часа. После отгонки избытка хлорокиси фосфора маслянистый остаток сливают на измельченный лед и подщелачивают водным раствором аммиака, поддерживая низкую температуру.
Выпавшие кристаллы отфильтровывают и промывают несколько раз
теплой водой.

Выход 2-амино-4-хлор-5-(2'-метокси-5'-бромбензил)-6-метилпиримидина 70,8%, т. пл. 90—92°. Найдено %: С 45,43; Н 6,34; N 11,89. С₁₃ H_{13} BrClN₃O. Вычислено %: С 45,57; Н 3,83; N 12,38.

Выход 2-амино-4-хлор-5-(2'-этокси-5'-бромбензил)-6-метилпиримидина $82,4^{9}/_{0}$; т. пл. 172—173°. Найдено $^{9}/_{0}$: С 47,56; Н 4,60; N 12,12. С₁₄Н₁₅ВгСІN₃О. Вычислено $^{9}/_{0}$: С 47,15; Н 4,24; N 11,78.

ՊԻՐԻՄԻԴԻՆԻ ԱԾԱՆՑՑԱԼՆԵՐ

XIII. ՏԵՂԱԿԱԼՎԱԾ 5-(2'-ԱԼԿՕՔՍԻ-5'-ԲՐՈՄԲԵՆՋԻԼ)ՊԻՐԻՄԻԴԻՆՆԵՐ

2. U. ZUPNBUL L U. U. 4PUUBP

Udhahaid

2-Ալկօքսի-5-բրոմբենվելըրորդների և ացետաքացախանթվի Էսթերի փոխաղդմամբ ստացված 2-ալկօքսի-5-բրոմբենզիլացետաքացախաթթուների էսթերներն նատրիումի մեթիլատի ներկալությամբ, ռետկցիալի մեջ մտցնեւ լով թիոմիզանլութի և դուանիդինի քլորհիդրատի հետ, սինթեղել ենք 2-մեր-կապտո- և 2-ամինա-4-օքսի-5-(2'-ալկօքսի-5'-բրոմբենզիլ)-6-մեթիլպիրիմի-դիններ նրանց հակաուռուցքային հատկություններն ուսումնասիրելու նպատակով; 2-մերկապտո-4-օքսի-6,6-տեղակալված պիրիմիդինները կալիումի հիդրօքսիդի ներկալությամբ, մեթիլի լոդիդի հետ ռեակցիայի մեջ մտցնելով, ստացել ենք 2-մեթիլ-մերկապտոածանցլալներ։ Վերջիններս, ինչպես նաև 2-ամինա-4-օքսի-5,6-տեղակալված պիրիմիդինները, ֆոսֆորի օքսիքլորիդի հետ փոխազդմամբ վեր են ածված 4-քլորածանցյալների։

ЛИТЕРАТУРА

- 1. А. А. Ароян, М. С. Крамер, Арм. хим. ж., 20, 218 (1967).
- 2. А. А. Ароян, М. С. Крамер, Арм. хим. ж., 22, 617 (1969).
- 3. Z. Budesinsky, M. Letovsky, Cesk. Pharm., 15, 432 (1966).
- 4. В. Н. Соколова, О. Ю. Магидсон, ХГС, 1968, 519.
- 5. А. А. Ароян, Арм. хим. ж., 19, 226 (1967).