XXII, № 8, 1969

УДК 543.062+546.27

ОПРЕДЕЛЕНИЕ БОРА В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

А. А. АБРАМЯН, М. А. ГЕВОРКЯН и Р. С. САРКИСЯН

Институт органической химии АН Армянской ССР, Армянский государственный педагогический институт им. X. Абовяна

Поступило 19 VI 1968

Разработан простой и быстрый способ определения бора в органических соединениях. Органические соединения нагревают при 400—500° в течение часа в присутствии перманганата калия в запаянных стеклянных трубках. Выделившаяся при количественном окислении органического соединения борная кислота с маннитом образует маннитоборную кислоту, которую титруют 0,1 и раствором гидроокиси натрия. Абсолютная точность определения бора ±0,20%.

Табл. 1. библ. ссылок 1.

Борсодержащее органическое соединение подвергают минерализации как мокрым, так и сухим способом. Полученную борную кислоту в присутствии маннита титруют водным раствором щелочи (в качестве индикатора применяют фенолфталеин). Маннитоборную кислоту можно определить потенциометрическим титрованием, колориметрическим, а также фотометрическим способами.

На основе прежних наших работ [1] мы разработали новый, простой и быстрый способ определения бора в органических соединениях. Борсодержащее органическое соединение нагревают в присутствии перманганата калия в стеклянных запаянных трубках при 400—500° в течение часа. Содержимое трубки обрабатывают азотной кислотой и образующуюся борную кислоту в присутствии маннита титруют водным раствором гидроокиси натрия.

Экспериментальная часть

Навеску (7—10 мг) борорганического соединения взвешивают в запаянной с одного конца трубке длиной 18—20 см с внутренним диаметром 8—10 мм, прибавляют 130—150 мг сухого порошкообразного перманганата калия и открытый конец трубки запаивают. Трубку помещают в электропечь типа Т6—15/260 и в течение часа нагревают при 400—500°. Органическое соединение количественно окисляется, бор превращается в В₂О₃, основное количество которого собирается в заостренной части трубки, находящейся вне печи. Во избежание потерь В₂О₂, вскрытие трубки производят иначе, чем при микрокариусе. Трубку придерживают полотенцем, на 1,5—2 см ниже ее заостренной части напильником осторожно делают срез, нагревают спиртовкой эту часть и с помощью смоченной ваты, приставляемой к срезу, вскрывают трубку. Заостренную часть трубки и ее содержимое

помещают в коническую колбу емкостью 100-150 мл. Трубку несколько раз промывают смесью 7-8 мл 0,5 и раствора азотной кислоты и 15-20 капель пергидроля. В заключение трубку промывают дистиллированной водой. Содержимое колбы кипятят до растворения MnO₀ и полного разложения H₀O₀, объем раствора доводят до 20 мл. После охлаждения раствор нейтрализуют 0,1 и раствором NaOH до получения неисчезающего грязно-желтого цвета (в начале образуется белый осадок Мп(ОН), на воздухе очень быстро окисляющийся в Мп(ОН)4, имеющий бурый цвет). Затем прибавляют немного маннита (на кончике ланцета). Цвет раствора исчезает. Образовавшуюся маннитоборную кислоту титруют 0,1 н раствором NaOH. При этом непрерывно добавляют маннит и смешивают раствор до появления желтого цвета, который при дальнейшем добавлении маннита не исчезает. Общее количество расхода маннита составляет 1,5-2 г. Израсходованный при титровании 1 мл 0,1 и NaOH соответствует 1,082 мг бора. При массовом анализе, не считая времени, расходуемого для разложения органического вещества, на одно определение тратится 20-25 минут.

Таблица

Вещества	Навеска, мгг	B, º/o		
		вычис- лено	найдено	разница
C ₄ H ₁₈ B ₁₀ O ₂	8,55 7,28 9,00 8,60 7,78	47,0	47,18 47,05 47,20 47,15 46,96	+0,18 +0,05 +0,20 +0,15 -0,04
C ₈ H ₁₆ B ₁₀	8,20 7,90 8,00 8,00 7,00	49,09	49,09 49,03 49,23 49,10 49,00	0,00 -0.06 +0,14 +0,01 -0,09
C ₅ H ₁₄ B ₁₆ O ₃	8,10 7,60 8,35 10,20 8,80	50,47	50,49 50,68 50,58 50,39 50,53	+0.02 $+0.21$ $+0.11$ -0.08 $+0.06$
C ₂ H ₂ B ₁₀ Cl ₁₀	10,50 10,90 10,50 9,25 9,30	22,40	22,49 22,53 22,36 22,54 22,45	+0,09 +0,13 -0,04 +0,14 +0,15
C ₄ H ₁₄ B ₁₀ O ₂	9,50 9,00 8,90 8,36 8,20	53,46	53,53 53,62 53,37 53,45 53,57	+0,07 +0,16 -0,09 -0,01 +0,11
C ₄ H ₁₆ B ₁₀ O ₂	7,78 8,20 9,36 9,00 8,10	50,00	50,06 50,14 49,77 50,21 50,09	+0,06 +0,14 -0,23 +0,21 +0,09

Результаты анализов некоторых борорганических соединений приведены в таблице. Абсолютная точность определения бора $\pm 0.2^{\circ}/_{\circ}$.

ՔՈՐԻ ՈՐՈՇՈՒՄԸ ՕՐԳԱՆԱԿԱՆ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐՈՒՄ

ու ու կթրաչատցան, տ, ա, Գեվորդցան և Ռ. Ս. Սարդսցան

Udhahaid

Մշակված է օրգանական միացություններում բորի որոշման պարզեցթած և արագ հղանակ։ Օրգանական միացությունը կալիումի պերմանգանատի
ներկալությամբ ապակե գոդված խողովակում 400—500°-ում մեկ ժամ տեվողությամբ ապակե գոդված խողովակում է օքսիդացման։ Խողովակը բաց անելուց հետո մի քանի անգամ լվանում են 7—8 մլ 0,5 ն ազոտական թթվի և 15—20 փաթիլ պերհիդրոլի խառնուրդով։ Լուծուլթը եռացնում են մինչև MnO₂ ի և H₂O₂-ի չրիվ քալքալումը, ապա ավելացնում են
թորած ջուր և ծավալը հասցնում մինչև 20 մլ. Լուծուլթը 0,1 ն NaOH-ով
չեզոքացներոց հետո առաջացած բորաթթուն մանիտի ներկալությամբ աիտթում են NaOH-ի 0,1 ն չուծույթով մինչև չանհետացող դեղին գույնի երանպավորում (NaOH-ի ազգնցությամբ առաջանում է Mn(OH)₃, որը օդում
արագ օքսիդանում է և փոխարկվում թուխ դույնի Mn(OH)₄-ի). NaOH-ի
0,1 ն լուծուլթի մեկ միչիլիարին համապատասկանում է 1,082 մզ բոր։
Բորի որոշման բացարձակ ճշտությունը ±0,200/₀ է։

ЛИТЕРАТУРА

А. А. Абрамян, Р. С. Саркисян, Изв. АН АрмССР, ХН, 12, 341 (1959); 14, 35 (1961); 15, 127 (1962); А. А. Абрамян, С. М. Аташян, М. А. Балян, Изв. АН АрмССР, ХН, 13, 343 (1960); А. А. Абрамян, Р. С. Саркисян, М. А. Балян, Изв. АН АрмССР, ХН, 14, 561 (1961); А. А. Абрамян, С. М. Аташян, Изв. АН АрмССР, ХН, 14, 441 (1961); А. А. Абрамян, М. А. Геворкян, Арм. хим. ж., 22, 128 (1969).