XXII, № 7, 1969

УДК 542.91+546.172

ПОЛУЧЕНИЕ И НЕКОТОРЫЕ ПРИМЕНЕНИЯ О-ЗАМЕЩЕННЫХ ГИДРОКСИЛАМИНОВ

А. А. АРОЯН

Институт тонкой органической химии АН Армянской ССР Поступило 22 III 1968

Взаимодействием N-оксифталимида с замещенными бензилхлоридами в присутствии триэтиламина и поташа синтезированы N-бензилоксифталимиды, гидразинолизкоторых приводит к соответствующим О-замещенным гидроксиламинам. Последние применены в синтезах уретанов, амидов и производных гуанидина.

Табл. 3, библ. ссылок 11.

Антибактериальные свойства циклосерина (I) и канаванина (II), которые можно рассматривать как производные гидроксиламина, стимулировали исследования аналогичных соединений [1, 2].

В настоящее время синтезированы не только гидроксиламинопроизводные аминокислот, но и многие другие соединения, содержащие оксиаминную группировку. Биологические испытания показали перспективность последних. В литературе есть сообщения об антибактериальной, диуретической, антиревматической, гипогликемической, противосудорожной, канцеролитической активности производных гидроксиламина [3]. Ряд работ посвящен способности последних снижать количество холестерина в крови [4].

Общепринятым методом получения О-замещенных гидроксиламинов является взаимодействие галоидопроизводных органических соединений с эфирами оксикарбаминовой кислоты в присутствии щелочи или алкоголятов с дальнейшим гидролизом полученных О-замещенных оксиуретанов соляной кислотой:

HONHCOOR
$$\xrightarrow{R'X}$$
 R'ONHCOOR \xrightarrow{HCI} R'ONH₃.

Однако, как показали наши опыты, а также опыты других исследователей [5, 6], "уретановый метод" не дает удовлетворительных результатов при получении О-алкоксибензилзамещенных и других аналогичных производных гидроксиламина. Это нужно объяснить тем, что исходные алкоксибензилхлориды в спиртовой среде в присутствии щелочи или алкоголятов легко образуют алкоксибензилэтиловые эфиры. С другой стороны, в результате большой реакционной способности алкоксибензилхлоридов происходит одновременное замещение на алкоксибензильную группу водородных атомов и у кислорода, и у азота оксиуретанов.

Ранее нами был разработан способ синтеза О-(4-алкоксибензил)гидроксиламинов, обеспечивающий высокие выходы и исключающий образование О,N-замещенных производных, часто побочно получающихся при уретановом методе [7].

В настоящем сообщении описывается синтез ряда О-замещенных бензилгидроксиламинов, содержащих в ароматическом ядре различные радикалы.

Синтез этих соединений проведен согласно следующей схеме:

VII R=2-CH₃O, R'=5-Br;

VIII $R=2-C_2H_5O$, R'=5-Br.

О-Замещенные N-оксифталимиды получены взаимодействием оксифталимида с замещенными бензилхлоридами в среде диметилформамида в присутствии триэтиламина. Вместо последнего можно использовать поташ, однако, при этом выход продукта снижается на 5-7%.

Вторая стадия синтеза проведена в смеси метанола и диметилформамида действием гидрата гидразина. При этом сначала получается замещенный фталилгидразид, который в дальнейшем разлагают нагреванием с соляной кислотой. Выход О-алкоксибромбензилгидроксиламинов (VII, VIII) составляет $55-60^{\circ}/_{\circ}$. Однако, при гидрогенолизе V и VI получаются только следы соответствующих О-замещенных гидроксиламинов. Это, по-видимому, нужно объяснить тем, что в присутствии соляной кислоты одновременно с гидразинолизом происходит также гидролиз эфирной группы.

Полученные О-(4-алкоксибензил)- и О-(2-алкокси-5-бромбензил)-гидроксиламины использованы в синтезе уретанов (IX), ацетилпроизводных (X) и замещенных гуанидинов (XI), представляющих интерес для биологических испытаний.

R=CH₂O, C₂H₅O, C₃H₁O, C₄H₆O; R'=H, Br.

Первые из них синтезированы взаимодействием соответствующих О-замещенных гидроксиламинов или их хлоргидратов с метиловым эфиром хлоругольной кислоты в присутствии едкого натра в среде эфира.

Ацетилпроизводные получены 4-часовым нагреванием О-замещенных гидроксиламинов с избытком уксусного ангидрида. Как уретаны, так и ацилпроизводные получаются с высокими выходами и представляют собой устойчивые, белые кристаллические вещества со сравнительно низкой температурой плавления; хорошо растворяются в спирте, ацетоне, эфире. Их можно перекристаллизовывать из 50%-ного этанола или метанола.

Замещенные гуанидины синтезированы взаимодействием производных гидроксиламина с сульфатом S-метилизотиомочевины в водноспиртовой среде. Иногда они получаются в виде масел, которые при стоянии кристаллизуются.

Нам не удалось метилировать О-(4-алкоксибензил)гидроксиламины действием формалина и муравьиной кислоты или действием йодистого метила в присутствии бикарбоната натрия, как это описано для получения β-(диметиламинокси)этанола [8, 9]. Не удалось также цианэтилировать замещенные гидроксиламины акрилонитрилом в условиях, описанных для аминов или в присутствии триэтиламина.

Экспериментальная часть

N-(2-Метокси-5-бромбензилокси)фталимид (111). К раствору 16,3 г (0,1 моля) N-оксифталимида в 75 мл свежеперегнанного диметилформамида приливают 10,1 г (0,1 моля) триэтиламина, а затем 28,2 г (0,12 моля) 2-метокси-5-бромбензилхлорида [10]. Смесь при перемешивании нагревают на водяной бане в течение 4—5 часов. В конце указанного времени реакционная смесь обесцвечивается и образуется осадок гидрохлорида триэтиламина. Еще горячую реакционную массу переливают в стакан, содержащий 300—400 мл воды, оставляют 2—3 часа для завершения кристаллизации, отсасывают, промывают водой и перекристаллизовывают из этанола. Выход 32,5 г (89,4%); т. пл. 155—156°. Найдено %: С 50,45; Н 3,70; N 4,16. С16Н12ВгNO4. Вычислено %: С 50,29; Н 3,61; N 3,87. Вместо триэтиламина можно использовать 13,8 г (0,1 моля) хорошо высущенного и тщательно измельченного карбоната калия. При этом сначала обра-

зуется красный осадок калиевого производного оксифталимида. Выход

80—85°/₀.

N-(2-Этокси-5-бромбензилокси)фталимид (IV) получен из 16,3 г (0,1 моля) N-оксифталимида, 10,1 г (0,1 моля) триэтиламина и 29,9 г (0,12 моля) 2-этокси-5-бромбензилхлорида в среде 75 мл диметилформамида. Выход $\mathcal{E}_{2,7}$ г (87,0%); т. пл. $141-142^\circ$. Найдено $\mathcal{E}_{3,7}$ С 54,65; Н 3,79; N 4,09, $C_{12}H_{14}BrNO_4$. Вычислено \mathcal{E}_{0} : С 54,28; Н 3,75; N 3,72.

N-(3-Kap6метокси-4-метоксибензилокси) фталимид (V) получен из 8,15 г (0,05 моля) N-оксифталимида, 5,05 г (0,05 моля) триэтиламина и 11,7 г (0,055 моля) метилового эфира 2-метокси-5-хлорметилбензойной кислоты (II) в среде 35 мл диметилформамида. Выход 12,5 г (73,3%); т. пл. 169—170° (из смеси диметилформамид—этанол 1:3). Найдено %: С 63,25; H 4,56; N 4,32. $C_{18}H_{15}NO_{6}$. Вычислено %: С 63,34; H 4,43; N 4,10.

N-(2-Mетокси-5-карбметоксиметилбензилокси) фталимид (VI) получен из 8,15 г (0,05 моля) N-оксифталимида, 5,05 г (0,05 моля) триэтиламина и 12,6 г (0,055 моля) метилового эфира 4-метокси-3-хлорметилфенилуксусной кислоты в среде 35 мл диметилформамида. Выход 10,7 г (54,2%); т. пл. 103—105° (из абсолютного этанола). Найдено %: С 64,55; H 5,03; N 4,12. $C_{18}H_{17}NO_{6}$. Вычислено %: С 64,22; Н 4,82; N 3,96.

O-(2-Метокси-5-бромбензил)гидроксиламин (VII). 18,1 г (0,05 моля) N-(2-метокси-5-бромбензилокси)фталимида при перемешивании и нагревании на водяной бане растворяют в смеси 30 мл диметилформамида и 80 мл метанола. Затем удаляют водяную баню и осторожно приливают 6,25 г (0,1 моля) 80% ного гидрата гидразчна. Перемешивание и нагревание на водяной бане продолжают еще 10 минут и оставляют на ночь. К полученному обильному осадку приливают около 18 мл концентрированной соляной кислоты (рН 1-2) и при перемешивании кипятят на водяной бане в течение 30 минут. Кипящую реакционную смесь отсасывают, из фильтрата отгоняют метанол в вакууме водоструйного насоса и остаток экстрагируют эфиром. К водному слою приливают 35—40 мл 25% -ного раствора едкого натра и тщательно экстрагируют эфиром. Эфирный экстракт высушивают сульфатом натрия и после отгонки растворителя остаток перегоняют в вакууме. Т. кип. 125—137°/1 мм; т. пл. 40—42°. Выход 6,9 г (60°/0). d²⁰ 1,4643; n²⁰ 1,5750. MR_D найдено 52,37; вычислено 51,62. Найдено %: С 41,27; Н 4,12; N 6,25. С_вН₁₀ВгNО_в. Вычислено %: С 41,4; H 4,34; N 6,03.

Гидрохлорид, полученный в растворе абсолютного эфира действием эфирного раствора хлористого водорода, плавится при 184—186°.

O-(2-Этокси-5-бромбензил)гидроксиламин (VIII) получен из 18,8 г (0,05 моля) N-(2-этокси-5-бромбензилокси)фталимида, 6,25 г (0,1 моля) 80° 0-ного раствора гидрата гидразина в среде смеси 30 мл

диметилформамида и 80 мл метанола. Выход 6,9 г (56,1%); т. кип. $141-143^{\circ}/1$ мм. d_{1}^{20} 1,4420; n_{D}^{20} 1,5718. MR_D найдено 56,14; вычислено 56,24. Найдено %: С 44,25; Н 5,12; N 5,83. С₉Н₁₂ВгNО₂. Вычислено %: С 43,92; Н 4,91; N 5,68. Хлоргидрат плавится при 196—197°.

О-(4-Алкоксибензил)- и О-(2-алкокси-5-бромбензил)-N-карбметоксигидроксиламины (IX). К раствору 0,02 моля замещенного бензилоксиамина в 75 мл эфира при перемешивании и охлаждении водой приливают 0,025 моля метилового эфира хлоругольной кислоты, а затем 15 мл 20% ного раствора едкого кали. Смесь перемешивают при комнатной температуре в течение 3—4 часов, отделяют водный слой, а эфирный высушивают сульфатом натрия. После отгонки растворителя замещенный карбамат получается в виде масла, которое кристаллизуется при растирании стеклянной палочкой. Выходы и данные элементарного анализа синтезированных соединений приведены в таблице 1.

Таблица 1

100	R'	Т. пл., °С	Выход, 0/0		А нализ, °/0					
R				Молекулярная формула	С		Н		N	
					найдено	вычис-	найдено	вычис-	найдено	вычис- лено
4-CH ₂ O	н	67—69	88,4	C ₁₀ H ₁₃ NO ₄	57,11	56,86	6,35	6,20	6,82	6,63
4-C2H5O	Н	40-42	87,5	C11H15NO4	58,92	58,65	7,02	6,71	6,45	6,21
4-C ₃ H ₇ O	Н	6465	83,6		59,86	60,23	7,08	7,16	5,54	5,85
4-C4H,0*	Н	29-31	80,5	C13H19NO4	61,53	61.64	7,38	7,56	5,32	5,53
2-CH ₃ O	5-Br	77-79	84,3	C ₁₀ H ₁₂ BrNO ₄	41,20	41,40	4,29	4,17	4,95	4,83
2-C ₂ H ₅ O	5-Br	6466	81,5	C ₁₁ H ₁₄ BrNO ₄		43,44	4,85	4,64	4,72	4,60
						1				

^{*} Т. кип. 175—177°/1 мм.

О-(4-Алкоксибензил)- и О-(2-алкокси-5-бромбензил)-N-ацетил-гидроксиламины (X). Смесь 0,02 моля замещенного бензилоксиамина и 10 мл уксусного ангидрида нагревают на водяной бане в течение 3—4 часов. Затем реакционную смесь вливают в стакан, содержащий 40—50 мл воды. Полученные кристаллы отсасывают, промывают водой и перекристаллизовывают из 50% этанола (табл. 2).

4-Алкоксибензил- и 2-алкокси-5-бромбензилоксигуанидины (XI). Смесь 0,01 моля О-замещенного гидроксиламина, 0,01 моля сульфата S-метилизотномочевины и 25 мл 50% - ного этанола нагревают на водяной бане в течение 8—10 часов. Затем отгоняют этанол, отсасы-

вают полученный осадок и перекристаллизовывают из 50% ного этанола. Иногда замещенные гуанидины получаются в виде масел, которые при стоянии кристаллизуются (табл. 3).

Таблица 2

	R'	Т. п л. ,	Выход, 0/0	Молекулярная формула	А нали 3, %					
R					С		Н		N	
					найдево	вычис-	найдено	вычис-	найдено	вычис-
4-CH ₃ O	н	88—89	93,4	C ₁₀ H ₁₃ NO ₃	61,63	61,53	6,44	6,71	7,55	7,17
4-C2H5O	Н	84—85	92,5	C11H15NO3	62,89	63,15	7,13	7,23	6,86	6,69
4-C3H7O	Н	64-65	94,2	C12H11NO2	64,56	64,55	7,40	7,68	6,46	6,27
4-C4HO	Н	75—76	90,6	C ₁₃ H ₁₉ NO ₃	66,15	65,79	8,27	8,07	5,72	5,90
2-CH ₃ O	5-Br	98—99	91,5	C ₁₀ H ₁₃ BrNO ₃	44,05	43,82	4,62	4,41	5,32	5,11
2-C ₂ H ₄ O	5-Br	99—101	90,2	C ₁₁ H ₁₄ BrNO ₃	46,12	45,85	5,15	4,89	5,10	4,86

Таблица 3

R	R'	Т. пл.,	Виход, 0/0		Анализ, 0/0				
					N		S		
				Молекулярная формула	вно	ů	депо	J	
				12	найдено	вычис-	найд	вычис лено	
4-CH ₃ O	н	141—143	65,0	C ₆ H ₁₃ N ₃ O ₂ ·0,5H ₂ SO ₄	17.48	17,20	6.72	6,56	
4-C ₂ H ₅ O	Н	174—175	50,4	C ₁₀ H ₁₅ N ₃ O ₂ ·0,5H ₂ SO ₄		16,27	6,54	100	
4-C3H7O	Н	140—141	44,0	C11H17N3O2.0,5H2SO4	15,72	15,43	6,11	5,88	
4-C4HO	Н	108—109	50,0	C12H19N3O2.0,5H2SO4	15,02	14,68	5,81	5,59	
2-CH ₂ O	5-Br	219—220	75,0	C,H12BrN3O2.0,5H2SO4	13,22	13,00	5,22	4,96	
2-C2H5O	5-Br	195—196	71,1	C10H14BrN2O2.0,5H3SO4	12,25	12,46	5,10	4,75	
		7			1	1000			

O-ՏԵՂԱԿԱԼՎԱԾ ՀԻԴՐՈՔՍԻԼԱՄԻՆՆԵՐԻ ՍՏԱՑՈՒՄԸ ԵՎ ՆՐԱՆՑ ՄԻ ՔԱՆԻ ԿԻՐԱՌՈՒԹՅՈՒՆՆԵՐԸ

2. u. zurnsut

Udhnhnid

սին Թեզի համար։

ЛИТЕРАТУРА

- 1. R. P. Buhs, I. Putter, J. Am. Chem. Soc., 77, 2344 (1955).
- 2. D. D. Nyberg, B. E. Christensen, J. Am. Chem. Soc., 79, 1222 (1957).
- 3. A. F. McKey, D. L. Garmalse, G. Y. Parls, S. Gelblum, Can. J. Chem., 38, 343 (1960); P. Mamalis, J. Green, D. McHale, J. Chem. Soc., 229 (1960); E. Testa, B. J. R. Nicolaus, L. Martoni, G. Pagani, Helv. Chim. Acta, 46, 766 (1963); B. J. R. Nicolaus, G. Pogani, E. Testa, Tam me, 45, 1381 (1962); G. Pifferi, E. Testa, Tetrahedron, 22, 2107 (1966); Пат. США, 3.262.978 [C. A., 66, 2325d (1967)]; P. Mamalis, L. Jeffries, S. A. Rice, M. J. Rix, D. J. Outred, J. Med. Chem., 8, 684 (1965).
- B. J. Ludwig, F. Dürsch, M. Auerbach, K. Tomaczek, F. M. Berger, J. Med. Chem., 10, 556 (1967).
- Бельгийск. пат. 612.879 (1962) [С. А., 57, 16494d ((1962)].
- 6. Ю. В. Маркова, Н. Г. Остроумова, Л. Н. Зенкова, М. Н. Шукина, ЖОрХ, 2, 239 (1966).
- 7. А. А. Ароян, Авт. свид. 1131845/33-4 14.11.1967 г.
- B. J. R. Nicolaus, L. Mariani, G. Pagani, G. Maffil, E. Testa, Ann. Chim. (Rome), 53 (3), 281 (1963) [C. A., 59, 9851f (1963)].
- 9. B. J. R. Nicolaus. G. Pagani, E. Testa, Helv. Chim. Acta, 45, 858 (1962).
- 10. А. А. Ароян, Арм. хим. ж., 19, 226 (1966).
- 11. А. А. Ароян, Изв. АН АрмССР, ХН, 16, 373 (1963).