XXII, № 11, 1969

УДК 678. 744. 531

получение поливинилформаля

IV. ОСАЖДЕНИЕ ПОЛИВИНИЛФОРМАЛЯ ИЗ РЕАКЦИОННОЙ СМЕСИ

А. Е. АКОПЯН, М. Б. ОРДЯН и Л. А. САРКИСЯН

Ереванский отдел научно-исследовательского и проектного института полимеризационных пластмасс

Поступило 8 X 1968

Показано, что осаждение поливинилформаля из реакционной смеси сильно зависит от концентрации полимера и уксусной кислоты, скорости подачи осадителя, температуры и интенсивности перемешивания.

Наличие в поливинилформале незначительных количеств примесей серной и уксусной кислот сильно понижает, а наличие незначительных количеств солей (сульфата, карбоната и ацетата натрия) в некоторой степени повышает термостабильность полимера, не влияя на его диэлектрические показатели.

Рис. 2, табл. 2, библ. ссылов 3.

Ранее было показано [1—3], что растворимый поливинилформаль получается при проведении процессов полимеризации винилацетата и ацеталирования поливинилацетата в водно-уксуснокислом растворе.

В данной работе рассматриваются процессы осаждения поливинилформаля из реакционной смеси, промывки и стабилизации.

Полнота процесса отмывки осажденного поливинилформаля от уксусной и серной кислот, безусловно, зависит от его агрегатного состояния. Лучшие результаты получаются при осаждении поливинилформаля в виде мелкозернистого материала или порошка. Однако, попытка осадить поливинилформаль из исходного раствора путем его разбавления водой не увенчалась успехом; полимер при этом выделялся в виде липкой массы. Выяснилось, что полимер в виде мелкозернистого материала можно осадить только при строго определенных условиях: концентрации полимера и уксусной кислоты в исходном растворе, температуры процесса, скорости подачи осадителя и числа оборотов мешалки.

Выбор оптимальных условий проведения процессов осаждения производился путем определения грануляции и термостабильности осажденного поливинилформаля.

Экспериментальная часть

Реакционная смесь, полученная при ацеталировании поливинилацетата формальдегидом в гомогенной среде, имеет следующий со-

став ($^{0}/_{0}$): поливинилформаль — 19—20, уксусная кислота — 51—50, формальдегид — 0,3—0,8, серная кислота — 2,5—3, вода — 25—26.

Процесс осаждения поливинилформаля из раствора осуществлялся в трехтубусной круглодонной литровой колбе, снабженной механической мешалкой, термометром и капельной воронкой. Осаждение производилось медленным добавлением воды из капельной воронки к непрерывно перемешиваемой реакционной смеси. Однако, независимо от скорости подачи воды и числа оборотов мешалки, реакционная смесь не обеспечивала выделение полимера в виде мелкозернистого материала.

Поэтому в первых опытах изучалось влияние концентрации поливинилформаля и уксусной кислоты в растворе на процесс осаждения полимера. Установлено, что порог осаждения, т. е. помутнение раствора, начинается при снижении содержания уксусной кислоты в среде до 35-36%.

Существенное влияние на грануляцию осажденного поливинилформаля оказывает концентрация полимера в растворе. С целью определения концентрации поливинилформаля в растворе, обеспечивающей осаждение полимера в виде зерен, определенное количество исходного раствора разбавлялось различными количествами 40—45% - ного водного раствора уксусной кислоты, и из полученных разбавленных растворов проводилось осаждение полимера водой. Данные опытов этой серии приведены в таблице 1.

Таблица 1
Зависимость грануляции полимера от соотношения исходного раствора и разбавителя

Соотношение исходного ра- створа и раз- бавителя, в. ч.	Грануляция, мм	Соотношение исходного ра- створа и раз- бавителя, в. ч.	.M.M.	
1:0,10	липкая масса	1:1,25		
1,0,25	100	1:1,5	0,5-1	
1:0,5	7—8	1:2,0	0,5—1	
1:0,75	5-6		_	
1:1,0	3-4	- /	- 4	

Из приведенных данных видно, что существует переходная концентрация поливинилформаля в растворе, выше которой полимер выделяется в виде липкой массы. Этой переходной концентрацией является $15-16^0/_0$, т. е. соотношение разбавителя и раствора, равное 0.25:1. Кроме того, эти данные показывают, что размеры зерен осажденного поливинилформаля уменьшаются с увеличением соотношения разбавителя и раствора. Поливинилформаль с размерами зерен 1.0-2.0 мм, обеспечивающими его эффективную промывку и стабилизацию, получается при соотношении разбавителя и раствора, равном

1,25+1,5:1, т. е. оптимальная концентрация поливинилформаля в растворе составляет $7-8^{0}/_{o}$.

Во второй серии опытов изучалось влияние скорости подачи воды и температуры процесса на размеры зерен осажденного поливинилформаля. Осаждение полимера производилось при соотношении раствора и разбавителя, равном 1:1,5, и числе оборотов мешалки 150 об/мин. Расход воды при полном осаждении поливинилформаля составлял 0,5—0.6 в. ч. на 1 в. ч. разбавленного раствора.

Таблица 2
Зависимость грануляции полимера от скорости подачи воды и температуры

Скорость подачи во- ды, г/мин	Размеры зерен в мм при различных температурах, °C					
	5	10	15	20	25	Примечание
1,5	0,5 1	0,5-1	0,5—1	1-2	2- 3	Во всех опытах было взято 100 мл лака, скорость перемешивания раствора составляла 130—150 об/мин.
2,0	1 - 2	0,5-1	0,5-1	1-2	2 3	
2,5	2 - 3	0,5-1	1 -2	2-3	3	
5	3 - 5	1 -2	1 -2	2—3	3- 5	
8	5 - 7	3 —5	2 -3	3-5	5-7	200 200
16	7 —10	5 —7	3 -5	5-7	7-10	200

Данные таблицы 2 показывают, что при увеличении скорости подачи воды при осаждении поливинилформаля размеры зерен увеличиваются и становятся более неравномерными. Мелкозернистый полимер осаждается в том случае, когда скорость подаваемой воды составляет 2,5—5,0 г/мин. Дальнейшее увеличение скорости подачи воды на размер зерен существенного влияния не оказывает.

Поливинилформаль не растворим в смеси вода-уксусная кислота. в которой концентрация последней ниже 35%. Поэтому наиболее важной является скорость подачи того количества воды, которое вызывает помутнение исходного раствора. Если скорость подачи воды до помутнения раствора значительно превышает норму (больше 5,0 г/мин), то вследствие неравномерного разбавления реакционной среды частицы осажденного полимера превращаются в комья. Расход воды до помутнения раствора составляет около 25%, общего количества воды, необходимого для полного осаждения полимера. В этот первоначальный период подачи воды важное значение имеют также температура процесса осаждения и интенсивность перемещивания смеси. Понижение температуры при постоянной скорости подачи воды и перемешивании раствора приводит к уменьшению размеров частиц осадка, но при температуре 5° и ниже осяждению зернистого, твердого полимера препятствует значительное возрастание вязкости среды. Поэтому наилучшие результаты получаются в температурном интервале $10-15^\circ$.

Поливинилформаль в виде порошка можно осаждать, если подавать его разбавленным раствором со скоростью 15—20 г/мин в

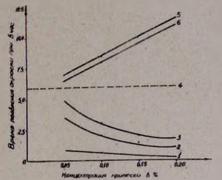


Рис. 1. Зависимость интенсивности окрашивания от концентрации примесей при 150° ; I— H_2SO_4 ; 2— CH_3COOH ; 3— CH_2O ; 4—9талон; 5— Na_2SO_4 ; 6— CH_3COONa .

воду, взятую в 5—10-кратном от раствора количестве, соблюдая те же условия, а именно: соотношение разбавителя и раствора, температуру и интенсивность перемешивания смеси. Подачу раствора в осадитель можно продолжать до достижения концентрации уксусной кислоты в растворе 30—35%.

В опытах третьей серии изучался процесс промывки и стабилизации осажденного поливинилформаля. Полное удаление остатков серной и уксусной кислот требует многократной промывки осадка водой, что приводит к расходу боль-

шого количества воды и снижению производительности процесса. Для определения расхода воды на промывку оказалось необходимым установить влияние примесей на термостабильность поливинилформаля.

В качестве искусственных примесей были выбраны серная и уксусная кислоты и их натриевые соли: первые остаются в полимере после его промывки, а последние образуются при стабилизации полимера щелочным реагентом. В этих опытах использовался порошкообразный многократно промытый и высушенный поливинилформаль, отдельные образцы которого выдерживались при 35° в течение 3 часов в водных растворах ацетата и сульфата натрия, уксусной и серной кислот, концентрации которых варьировелись, и сушились в вакууме при 50° до постоянного веса. Далее образцы выдерживались в термостате при 125, 150, 175, 200° и через определенные промежутки времени определялась их окрашиваемость. Полученные в этих опытах результаты изображены в виде графиков (рис. 1—2).

Приведенные данные показывают, что из испытанных реагентов лишь серная и уксусная кислоты ускоряют процесс окрашивания об-

разцов. Наиболее эффективной является серная кислота и эффективность воздействия возрастает с повышением ее концентрации. Уже при 125° в течение 30 минут образец, обработанный 0,1%-ным раствором серной кислоты, приобретает темно-серый цвет, а при 180° чернеет и становится совершенно хрупким.

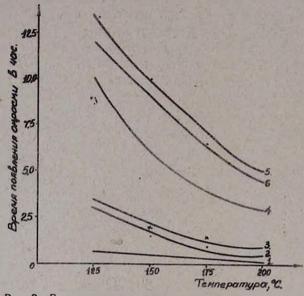


Рис. 2. Зависимость скорости окрашивания от температуры при содержании примеси $0.15^{\circ}/_{\circ}$: $1-H_{2}SO_{4}$; $2-CH_{2}COOH$; $3-CH_{2}O$; 4- эталон; 5- Na $_{2}SO_{4}$; 6- CH $_{3}COONa$.

Воздействие уксусной кислоты на окрашиваемость полимера проявляется гораздо слабее, чем серной кислоты, но при высоких температурах (175—200°) становится достаточно ощутимым. Из этих же данных видно, что наличие небольших количеств сульфата и ацетата натрия в полимере, приводит к некоторому повышению его термостабильности. Это явление, по-видимому, может быть объяснено дезактивацией свободных радикалов, возникающих при окислительных процессах и вызывающих цепную реакцию деструкции полимера.

Таким образом, наличие в поливинилформале даже незначительных примесей серной и уксусной кислот совершенно нежелательно, а наличие незначительных количеств солей, наоборот, в некоторой степени повышает термостабильность полимера, не оказывая заметного влияния на его диэлектрические показатели. Поэтому оказалось более целесообразным число промывок осажденного поливинилформаля снизить с 20 до 5, а остальную кислотность (0,5—7%) нейтрализовать слабым раствором щелочи, т. е. подвергнуть полимер щелочной стабилизации. Удовлетворительные результаты получаются при обработке мелкозернистого материала 0,05% ным раствором бикарбоната натрия при 35—40° и перемешивании.

ՊՈԼԻՎԻՆԻԼՖՈՐՄԱԼԻ ՍՏԱՑՈՒՄ

IV. ՌԵԱԿՑԻՈՆ ԽԱՌՆՈՒՐԳԻՑ ՊՈԼԻՎԻՆԻԼՖՈՐՄԱԼԻ ՆՍՑԵՑՈՒՄԸ

2. 5. ՀԱԿՈՐՑԱՆ, Մ. թ. ՕՐԴՑԱՆ և Լ. Հ. ՍԱՐԳՍՑԱՆ

Udhnhnid

Պոլիվինիլֆորմալի ստացման տեկմնոլոգիական ցիկլում կարևոր նշանակտթվուն ունեն ռեակցիոն միջավալրից նրա անջատման և մաջրման պրո∽ ցեսները։ Յուլց է տրված, որ ռեակցիոն միջավալրից պոլիվինիլֆորմալի նստեցումը խիստ կտիմած է միջավալրում նրա կոնցենտրացիալից, նստեցնող կոմպոնենտի տրման արագութլունից, միջավալրի ջերմաստիձանից և խառնրման ինտենսիվությունից,

Հաստատված է, որ տարրեր ջերմաստիճաններում պոլիվինիլֆորմալի ջերմասին փորձարկման ժամանակ պոլիմերի մեջ ծծմբական և քացախալին թերմանիր (հատկապես ծծմբական Թթվի) առկալությունը խիստ իջեցնում է ջերմային ներգործության նկատմամբ նրա դիմադրողականությունը, իսկ որոշ աղևրի (Na₂SO₄, Na₂CO₃, NaOCOCH₃) ներկալությունը, ընդհակառակը, հատմեմատարար բարձրացնում է պոլիվինիլ Լորմալի ջերմակալունությունը։

ЛИТЕРАТУРА

- 1. А. Е. Акопян, М. Б. Ордян, Л. А. Саркисян, Дж. Х. Саркисян, С. Х. Геворкян, Арм. хим. ж., 22, 442 (1969).
- 2. А. Е. Акопян, М. Б. Ордян, Л. А. Саркисян, Дж. Х. Саркисян, Арм. хим. ж., 22, 627 (1969).
- 3. А. Е. Акопян, М. Б. Ордян, Л. А. Саркисян, Дж. Х. Саркисян, Р. Г. Геворкян, Арм. хим. ж., 22, 727 (1969).

The second of th