XXII, № 10, 1969

УДК 541.64+547.538.141

ПРОИЗВОДНЫЕ СТИРОЛА

ІХ. СИНТЕЗ И ПОЛИМЕРИЗАЦИЯ 4-АЦИЛСТИРОЛОВ

Г. М. ПОГОСЯН, Г. А. ЖАМКОЧЯН и С. Г. МАЦОЯН Институт органической химии АН Армянской ССР Поступило 16 І 1969

Синтезирован ряд 4-ацилстиролов. Изучены их радикальная полимеризация и мекоторые свойства полученных полимеров.

Рис. 1, табл. 3, библ. ссылок 5.

Ранее нами были описаны синтез и полимеризация ряда ядернозамещенных стиролов [1]. В развитие этих исследований представлялось интересным изучение способности к полимеризации 4-кетозамещенных стиролов и свойств их полимеров. Сведения о синтезе и полимеризации винилпроизводных ароматических кетонов — 4-ацилстиролов до настоящего времени в литературе ограничивались отрывочными данными [2]. Из ряда 4-ацилстиролов синтез алкил-4-винилфенилкетонов нами осуществлен ацилированием β-бромэтилбензола с
помощью хлорангидридов алифатических кислот в присутствии хлористого алюминия с последующим дегидробромированием полученных
4-ацил-β-бромэтилбензолов спиртовой щелочью

4-Ароилстиролы не удалось получить по аналогичной схеме вследствие сложности протекания реакции ацилирования в присутствии клорангидридов ароматических кислот и образования смеси различных продуктов. Для получения 4-ароилстиролов разработан новый путь синтеза на основе 4-β-бромэтилбензойной кислоты — конденсацией ее хлорангидрида с соответствующими ароматическими соединениями в присутствии хлористого алюминия и последующим дегидробромированием полученных 4-ароил-β-бромэтилбензолов

$$HOOC$$
 CH_2CH_2Br $SOCI_3$ $CICO$ CH_2CH_2Br $ArCO$ CH_2CH_2Br $CICO$ $CICO$ $CICO$ $CICO$ $CICO$ $CICO$ $CICO$ $CICO$

R (Ar)	Buxon, º/o	Т. кнп., °С/мм	Т. пл., °С	n ²⁰
CH ₃ [3]	71,0	142—144/2	_	1,5725
C ₂ H ₅ [4]	68	149—152/5	45-46	_
C ₃ H,	84,3	143-144/1	_	1,5530
C ₄ H ₉	92,8	149-150/1		1,5477
C _B H ₁₁	65,3	156—158/1	_	1,5430
C ₇ H ₁₆	94,0	174—175/1	_	1,5292
C ₆ H ₅ CH ₃	75,6	206-210/	8385	_
C ₆ H ₅	81,3	193—197/3	49—50	_
n-CH ₃ C ₆ H ₄	93,8	189—192/2	48—49	2-
n-CH3OC.H4	85,9	221-222/2	47-48	_
n-BrC ₆ H ₄	57,4	215—220/5	94—95	-

4-Ацил-β-бромэтилбензолы

		N	IR _D		A ı	а л	н з,	0/0		
d ²⁰	Молекулярная	OH	۱ ۵	н	айде	но	Вы	числ	ено	Т. пл.
формула	найдено	вычис	С	Н	Br	С	н	Br	оксима,	
_	_	_	- 1	-	_	_	-	-	=	110-111
_	C ₁₁ H ₁₂ OBr	_	_	54,88	5,64	33,09	54,79	5,43	33,14	78-79
1,2321	C ₁₂ H ₁₅ OBr	66,27	61,79	_	_	31,02	_		31,32	65-67
1,2128	C ₁₃ H ₁₇ OBr	70,19	66,41	58,23	6,62	30,00	58,00	6,23	29,68	89-91
1,2084	C14H19OBr	73,87	71,027	59,32	6,54	27,82	59,37	6,76	28,21	60-61
1,1603	C ₁₆ H ₂₃ OBr	82,71	80,26	80,78	7,82	25,75	61,75	7,44	25,68	56 -57
_	C ₁₆ H ₁₅ OBr		_	63,23	4,75	26,19	63,33	4,98	26,37	121-123
-	C ₁₅ H ₁₃ OBr	_	- 1	62,58	5,05	27,70	62,29	4,53	27,62	_
_	C ₁₆ H ₁₅ OBr		-	63,70	5,30	26,75	63,38	4,98	26,30	_
-	C ₁₆ H ₁₅ O ₂ Br	_	_	_	_	24,98	_	_	25,03	
-	C ₁₅ H ₁₂ OBr ₂	_		_	1-	43,10	_	-	43,42	
	151202			14"			-		1 1 1 1 1	

В случае 4-винилбензофенона промежуточный 4-бензоил-β-бромэтилбензол получен также по второму варианту—конденсацией хлористого бензоила с β-ацетоксиэтилбензолом с последующим замещением ацетоксигруппы на бром

Выходы и физико-химические свойства полученных алифатических и ароматических 4-ацил-β-бромэтилбензолов и 4-ацилстиролов, а также их оксимов приведены в таблицах 1 и 2.

Таблица 2:

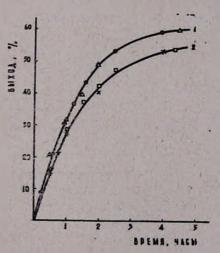
300	0	Т. кип.,	Т. пл.,	Молеку- лярная	Анализ, 0/0				
R (Ar) HOXING	д. 0/0				найдено		вычислено		Т. пл. оксила,
	°С/мм	℃	формула	С	Н	С	Н	°C	
CH ₃ [5]	75,5	85—87/1	37—38	_	_	_	_	-	116—117
C ₂ H ₅ *	83,3	100—101/1	_	C11H12O	82,21	7,61	82,47	7,55	_
C ₃ H ₇	97,0	102-104/1	3334	C12H14O	82,19	8,03	82,71	8,09	-
C ₄ H ₉	93,0	115-116/1	39-40	C13H16O	82,50	8,43	82,93	8,56	
C5H11	91,5	_	50-51	C14H18O	82,70	8,93	83,11	8,96	10
C7H15	94,6	T	62-63	C16H23O	83,16	9,45	83,44	9,19	C-10
C.H.CH.	90,9	-	87—88	C18H14O	86,28	6,39	86,45	6,35	126—128
C ₆ H ₅	90,0	-	45—46	C15H12O	86,31	5,91	86,51	5,80	-
n-CH ₃ C ₄ H ₄	95,4	_	62-63	C16H14O	86,34	6,49	86,45	6,34	_
n-CH3OC.H4	93,9	_	100-101	C16H14O2	80,51	5,97	80,64	5,92	
n-BrC ₈ H ₄	96,1	-	142—143	C ₁₅ H ₁₁ OBr	62,68	3,50	62,74	3,86	_

^{*} n_{D}^{20} 1,5696; d_{4}^{20} 1,0122. Найдено MR_{D} 51,89, вычислено MR_{D} 48,94.

Изучение полимеризации полученных 4-кетозамещенных стиролов проводили в массе и в растворе (бензол, диметилформамид) в присутствии динитрила азоизомасляной кислоты (ДАК) и перекиси бензоила (ПБ). Результаты радикальной полимеризации приведены в таблице 3 и на рисунке. При полимеризации алифатических 4-ацилстиролов в массе, в отличие от 4-ароилстиролов, наблюдается гелеобразование; при сравнительно высоких степенях превращения (80-85%) происходит реакция поперечного сшивания с образованием трехмерного нерастворимого полимера. Склонность алифатических 4-ацилстиролов к трехмерной полимеризации при определенной глубине превра-

Брауном и Лоефлундом получен взаимодействием 4-винилфеннлиагнийброминда с бензонитрилом [2].

щения связана, по-видимому, с наличием в алкилкетонной группировке подвижного а-водорода, способствующего реакции передачи цепи на полимер.


Таблица 3 Полимеризация 4-ацилстиролов в бензоле в присутствии 0,5 мол. $^{0}/_{0}$ ДАК (от мономера) при 80° ; концентрация мономера 33 об. $^{0}/_{0}$

Мономер	меризации, часы	Выход полимера, 0/0	[ŋ]	
4-Ацетилстирол	2,5	53,5	0,42	
4-Пропионилстирол	6	65,7	0,10	
4-Бутирилстирол	6	53,9	0,27	
4-Валерилстирол	6	51,6	0,33	
4-Капроилстирол	6	50,5	0,27	
4-Каприлоилстирол	6	48,6	0,27	
4-Фенацетилстирол	6	78,2	0,10	
4-Бензоилстирол	2,5 2,5*	57,7 52,2	0,19	
4-л-Метилбензоилстирол	2,5 2,5*	77,3 75,8	0,20	
4-п-Метоксибензоилстирол	2,5 2,5*	71.4 62,6	0,26	
4-п-Бромбензонлстирол	2,5	56,0	-	

В присутствии 0,5 мол. ⁰/₀ ПБ.

Как видно из рисунка, кинетические кривые полимеризации 4-ацилстиролов и их оксимов накладываются друг на друга и, следовательно,

Рис. 1. Зависимость глубины полимеризации 4-ацетилстирола, 4-фенацетилстирола и их оксимов в диметилформамиде от продолжительности реакции. Концентрация мономера 33 об. 9 /₀, инициатор—ДАК, 0,5 мол. 9 /₀ (от мономера), температура 80° . I = 4-ацетилстирол, оксим 4-ацетилстирола. 2 = 4-фенацетилстирола.

они полимеризуются почти с одинаковой скоростью. Однако скорость полимеризации 4-фенацетилстирола и его оксима значительно меньше, чем 4-ацетилстирола и его оксима. По-видимому, замена кетонной

группы на кетоксимную в *пара*-положении стирола не приводит к заметному изменению поляризации винильной группы мономера.

Все очищенные образцы полимеров 4-ацилстиролов представляют собой белые порошкообразные вещества, растворимые в бензоле, диметилформамиде, но не растворимые в метаноле, петролейном эфире; характеристическая вязкость $[\eta]$ колеблется в пределах 0,1-0,42.

Экспериментальная часть

Конденсация хлорангидридов алифатических кислот с β-бромэтилбензолом. К смеси 81,4 г (0,61 моля) хлористого алюминия, 300 мл сухого четыреххлористого углерода и 0,65 моля хлорангидрида соответствующей кислоты при перемешивании и охлаждении ледяной водой по каплям прибавляли раствор 123,9 г (0,67 моля)β-бромэтилбензола в 1,3 моля хлорангидрида кислоты. Перемешивание продолжали до прекращения выделения хлористого водорода. Образовавшийся комплекс разлагали смесью льда и соляной кислоты и экстрагировали эфиром. Эфирный раствор промывали водой, 10°/0-ным раствором едкого натра, снова водой, сушили сульфатом магния и после удаления эфира остаток перегоняли в вакууме или перекристаллизовывали из гексана. Выходы и характеристики полученных алифатических 4-ацил-β-бромэтилбензолов приведены в таблице 1.

4- β -Бромэтилбензоилхлорид. В колбу с обратным холодильниником помещали 50 г (0,2 моля) 4- β -бромэтилбензойной кислоты и раствор 59,5 г (0,5 моля) хлористого тионила в 100 мл сухого бензола. Реакционную смесь нагревали при 40—50° до прекращения выделения газов (SO₂ и HCI). После удаления растворителя и перегонки остатка в вакууме получено 50 г (92,6%) хлорангидрида с т. кип. 124—5°/2 мм; т. пл. 38—39° (из гексана), n_D^{20} 1,6012, d_D^{20} 1,6070. Найдено d_D^{20} (C1+Br) 46,80. С d_D^{20} 1,6012. Вычислено d_D^{20} (C1+Br) 46,60.

Конденсация 4-β-бромэтилбензоилхлорида с ароматическими соединениями. Смесь 5,5 г (0,04 моля) хлористого алюминия, 0,24 моля ароматического соединения (бензол, бромбензол и анизол), 10 г (0,04 моля) 4-β-бромэтилбензоилхлорида нагревали на кипящей водяной бане до прекращения выделения хлористого водорода. Содержимое колбы обрабатывали смесью льда и соляной кислоты, экстрагировали эфиром. Эфирный раствор промывали водой, 10% ным раствором едкого натра, снова водой, сушили сульфатом магния. После удаления эфира остаток перегоняли в вакууме и продукт перекристаллизовывали из гексана. Выходы и характеристики полученных арил-4-β-бромэтилфенилкетонов приведены в таблице 1.

4-β-Ацетоксиэтилбензофенон. К смеси 82 г (0,6 моля) хлористого алюминия, 200 мл сухого четыреххлористого углерода, 48 г (0,3 моля) β-ацетоксиэтилбензола при охлаждении и перемешивании добавили 126 г (0,9 моля) хлористого бензоила, после чего нагревали

на масляной бене при $140-150^\circ$ в течение 4-5 часов. Разложение и обработку образовавшегося комплекса проводили по вышеописанному. После удаления растворителя и перегонки остатка в вакууме получили 54,3 г $(68^\circ/_0)$ 4-3-ацетоксиэтилбензофенона с т. кип. 190— $200^\circ/_4$ мм — вязкую светло-желтую жидкость. Найдено $^\circ/_0$: С 76,25, Н 6,18. $C_{17}H_{16}O_3$. Вычислено $^\circ/_0$: С 76,09, Н 6,00.

4- β -Оксиэтилбензофенон. Смесь 25 г (0,09 моля) 4- β -ацетоксиэтилбензофенона, 6 г (0,107 моля) едкого кали, растворенного в 50 мл спирта, нагревали на кипящей водяной бане 2 часа, охладили, отфильтровали и после удаления из фильтрата спирта перегонкой остатка получили 14,8 г (70,5%) 4- β -оксиэтилбензофенона с т. кип. 200— 210°/3 мм, представляющего собой вязкое масло светло-коричневого цвета. Найдено %: С 79,41, Н 6,29. $C_{18}H_{14}O_{2}$. Вычислено %: С 79,62, Н 6,23.

4- β -Бромэтилбензофенон. Взаимодействием 10 г (0,04 моля) 4- β -оксиэтилбензофенона и смеси 202 г 40% -ной бромистоводородной кислоты и 50 г серной кислоты после обычной обработки получили продукт, кипящий в пределах 200—210°/4—5 мм, быстро закристаллизовавшийся в приемнике. Перекристаллизацией из гексана получили 10,1 г (79,5%) 4- β -бромэтилбензофенона с т. пл. 49—50°. Найдено % С 62,28, Н 6,17, Вг 27,74. С О Вычислено % С 62,28, Н 4,53, Вг 27,62.

4-Ацилстиролы. Смесь 0,25 моля соответствующего 4-ацил-β-бромэтилбензола, 21,8 г (0,39 моля) едкого кали, растворенного в 80 мл спирта и 0,05 г гидрохинона при перемешивании нагревали при 30—40° в течение получаса. После удаления спирта остаток обрабатывали водой и экстрагировали эфиром. Эфирный раствор промывали водой, сушили сульфатом магния и после удаления эфира остаток перегоняли в вакууме или перекристаллизовывали продукт из гексана. Выходы и характеристика полученных мономерных 4-ацилстиролов приведены в таблице 2.

Полимеризация 4-ацилстиролов. Полимеризацию проводили в запаянных ампулах, как описано ранее [1]. Характеристические вязкости поли-4-ацилстиролов определяли, используя растворы в бензоле, а для полимерных оксимов—в диметилформамиде при 20°.

ՍՏԻՐՈԼԻ ԱԾԱՆՑՑԱԼՆԵՐ

IX. 4-ԱՑԻԼՍՏԻՐՈԼՆԵՐԻ ՍԻՆԹԵԶ ԵՎ ՊՈԼԻՄԵՐԱՑՈՒՄ

Գ. Մ. ՊՈՂՈՍՅԱՆ, Գ. Հ. ԺԱՄԿՈՉՅԱՆ և Ս. Գ. ՄԱՑՈՅԱՆ

U. d y n y n i d

Նպատակ ունենալով հետազոտել մի շարք 4-կետոտեղակալված ստիրոլների պոլիժերանալու ընդունակությունը, իրականացրել ենք ալիֆատիկ Армянский химический журнал, XXII, 10—4 և արոմատիկ 4-ացիլստիրոլների սինթեզ, ուսումնասիրել պոլիմերացման ռեակցիալի որոշ օրինաչափութլունները և ստացված պոլիմերների մի ջանի հատկութլունները։ Ալկիլ-4-վինիլֆենիլ-կետոնների սինթեզը (ելջը 75—97%) իրականացվել է β-ըրոմէթիլբենզոլը ալլումինիումի ջլորիդի ներկալութլամբ ալիֆատիկ թթուների ջլորանհիդրիդներով ացիլացնելով և ստացված 4-ացիլ-β-բրոմէթիլբենզոլները սպիրտակին հիմջով դեհիդրոբրոմելով։ 4-Արոիլստի-թողները (ելջը 90—96%) ստացվել են 4-β-բրոմէթիլբենզոլական թթվի գնորանհիդրիդը համապատասխան արոմատիկ միացությունների հետ կոնդինսելով և ապա ստացված 4-արոիլ-β-բրոմէթիլբենզոլները դեհիդրոբրո-մելով։

Որոշված են ստացված պոլիմերների բնութագրական մածուցիկությունները, որոնք տատանվում են 0,1—0,42 սահմաններում։

ЛИТЕРАТУРА

- 1. Г. М. Погосян, Г. А. Жамкочян, С. Г. Мацоян, Изв. АН АрмССР, ХН. 18, 418, 421 (1965); Г. М. Погосян, Г. А. Жамкочян, С. Г. Мацоян, Высокомол. соед., 7, 707, 825 (1965); Г. М. Погосян, Г. А. Жамкочян, Г. С. Колесников, Высокомол. соед., 96, 218 (1967).
- 2. D. Braun, J. Loeflund, Makromol. Chem., 53, 219 (1962).
- 3. J. R. Williams, J. Am. Chem. Soc., 75, 2779 (1953).]
- 4. S. Tanimoto, M. Mitani, R. Oda, J. Chem. Soc. Japan, Industr. Chem. Sec., 69, 2144 (1966).
- 5. E. Z. Foreman, S. M. McElvain, J. Am. Chem. Soc., 62, 1435 (1940).