2 Ц 3 Ч Ц Ч Ц Б Р Г Р Ц Ч Ц Б Ц Г П Ц Ч Р Г АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XXII, № 1, 1969

УДК 543.544+546.719+546.77+546.78+546.881

ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ РЕДКИХ ЭЛЕМЕНТОВ

IV. РАЗДЕЛЕНИЕ И ИДЕНТИФИКАЦИЯ РЕНИЯ (VII), МОЛИБДЕНА(VI), ВАНАДИЯ(V) И ВОЛЬФРАМА(VI) В ПОДКИСЛЕННЫХ РАСТВОРАХ БУТИЛОВОГО И АМИЛОВОГО СПИРТОВ

Д. С. ГАЙБАКЯН

Ереванский государственный университет Поступило 14 II 1968

Изучены разделение и идентификация микрограммовых количеств рения и сопутствующих ему элементов: молибдена, ванадия и вольфрама методом тонкослойной хроматографии на окиси алюминия. В качестве подвижной фазы использованы бутиловый, изобутиловый, амиловый и изоамиловый спирты и их водные растворы с кислотами.

Табл. 3, библ. ссылок 2.

Анализ фракции полученных хроматографическим разделением близких по свойствам редких элементов рения и молибдена, ванадия и вольфрама на колонках, требует применения высокочувствительных методов. С этой точки зрения метод хроматографии в тонких слоях представляет значительный интерес.

В предыдущих сообщениях было описано применение метода хроматографии в тонком слое Al_2O_3 для идентификации и открытия рения, молибдена, вольфрама и ванадия в водных и солянокислых растворах метилового, этилового, пропилового и изопропилового спиртов [1, 2].

Данное сообщение посвящено исследованию применимости некоторых несмешивающихся с водой спиртов алифатического ряда, как бутилового, амилового и других, имеющих относительно длинные углеводородные цепи, а также их подкисленных растворов, для идентификации вышеуказанных ионов.

Экспериментальная часть

Методика экспериментов в основном была аналогична описанной ранее [1].

На стеклянную пластинку размерами 12×20 см наносили равномерный незакрепленный слой сорбента—носителя, (продажной тонкодисперсной окиси алюминия для хроматографии) толщиной 0,5 мм. На расстоянии 2 см от одного конца пластинки наносили растворы, содержащие несколько микрограммов рения(VII), молибдена(VI), ванадия(V) и вольфрама(VI) в отдельности и их смеси. Слой без активации погружали в стеклянную камеру с растворителем под углом 30°. По перемещению растворителя на расстоянии 10 см от старт в пластинку вынимали и опрыскивали сначала солянокислым раствором хлористого олова, затем $50^{\circ}/_{\circ}$ -ным раствором роданистого калия. На основании полученных результатов определяли $R_{\rm f}$ указанных ионов.

Результаты и их обсуждение

Сначала измеряли R_t ионов, применяя в качестве растворителя не смешивающиеся с водой спирты: бутиловый, амиловый, гексиловый, гептиловый и октиловый. При этом заметного перемещения ионов рения, молибдена, ванадия и вольфрама не наблюдали.

В следующих сериях опытов применяли в качестве подвижной фазы спирт—концентрированная соляная кислота различных составов. Данные R_f ионов в зависимости от состава растворителя при других постоянных параметрах приведены в таблице 1.

Таблица 1 Зависимость R₁ рения, молибдена, ванадия и вольфрама от состава подвижной фазы: спирт-концентрированная соляная кислота

Спирты		Объем		Величина R _f ионов				
назва-	объем, жл	соляной кислоты, жл	KACACIA,	Спирт:НС1	Re	Мо	v	w
к-Бутиловый	100 90 75 50 25 10	0 10 25 50 75 90 100	9:1 3:1 1:1 1:3 1:9	0,0 0,28 0,67 0,88 0,90 0,92 0,93	0,0 0,18 0,58 0,67 0,72 0,85 0,92	0,0 0,20 0,60 0,70 0,75 0,84 0,91	0,0° 0,0° 0,0° 0,20° 0,30° 0,32° 0,80°	
Изобутнловый	100 90 75 50 25 10	0 10 25 50 75 90 100	9:3 3:1 1:1 1:3 1:9	0,04 0,41 0,65 0,88 0,88 0,88 0,93	0,0 0,37 0,60 0,77 0,88 0,91 0,92	0,0 0,37 0,58 0,70 0,91 0,92 0,91	0,0 0,0 0,0 0,25 0,58 0,87 0,80	
и-Амиловый	100 90 75 50 25 10	0 10 25 50 75 90 100	9:1 3:1 1:1 1:3 1:9	0,0 0,26 0,57 0,71 0,88 0,91 0,93	0,0 0,20 0,58 0,70 0,86 0,88 0,92	0,0 0,24 0,59 0,74 0,80 0,92 0,91	0,0 0,0 0,0 0,20 0,36 0,50 0,80	
Изовинловый	100 90 75 50 25 10	0 10 25 50 75 90 100	9:1 3:1 1:1 1:3 1:9	0,02 0,40 0,58 0,72 0,75 0,85 0,93	0,0 0,37 0,57 0,68 0,78 0,88 0,92	0,0 0,38 0,53 0,67 0,72 0,78 0,91	0,0 0,0 0,0 0,25 0,50 0,76 0,80	

Как видно из данных таблицы, при добавлении концентрированного раствора соляной кислоты к бутиловому, изобутиловому, амиловому и изоамиловому спиртам резко увеличивается R_f рения, молибдена и ванадия. При объемном отношении спирт: концентрированная соляная кислота=1:3, величина R_f указанных ионов достигает максимального значения (0,80—0,90). Дальнейшее увеличение количества кислоты практически не изменяет R_f .

Влияние кислоты на величину R_f вольфрама носит несколько иной характер. Так, при объемном отношении кислоты и спирта=1:3 вольфрам остается на месте нанесения капли и только при отношении этих компонентов = 1:1, зона вольфрама перемещается, но его пятно имеет вытянутый вид.

Влияние кислоты в смесях со спиртами изо-строения отличается от данных, полученных со спиртами нормального строения, это становится особенно наглядным при объемных отношениях 9:1. В этих условиях значения R_f рения, молибдена и вольфрама выше, чем при изомерах с нормальной цепью. Некоторое перемещение рения наблюдается в случае изобутанола и изоамилового спирта в отсутствии соляной кислоты. Кроме того, в сильно кислой среде в растворах изобутанола и изоамилового спирта R_f вольфрама достигает 0,87 и 0,76, соответственно.

Таблица 2 Зависимость R_1 ионов рения, молибдена, ванадия и вольфрама от состава подвижной фазы: спирт— H_2O —HCl

Объем, мл			Отношение	Величина R, ионов			
бута- нола	воды	йонякоз кислоты	бутанол: : Н ₂ О: НСІ	Re	Мо	v	W
80	10	10	8:1:1	0,82	0,02	0,44	0,0
65	25	10	6,5:2,5:1	0,84	0,03	0,45	0,0
40	50	10	4:5:1	0,84	0,04	0,42	0,0
15	75	10	1,5:7,5:1	0,82	0,06	0,45	0,0
65 50 25 10	10 25 50 65	25 25 25 25 25	6,5:1:2,5 5:2,5:2,5 2,5:5:2,5 1:6,5:2,5	0,91 0,93 0,91 0,95	0,17 0,21 0,20 0,22	0,65 0,61 0,64 0,65	0,0 0,0 0,0 0,0
40	10	50	4:1:5	0,88	0,78	0,75	0,08
30	20	50	3:2:5	0,90	0,80	0,75	0,08
25	25	50	1:1:2	0,92	0,73	0,73	0,07
15	35	50	1,5:3,5:5	0,92	0,77	0,80	0,07
10	40	50	1:4:5	0,92	0,76	0,87	0,07
20	5	75	2:0,5:7,5	0,95	0,84	0,84	0,35
15	10	75	1,5:1,0:7,5	0,94	0,82	0,85	0,34
10	15	75	1:1,5:7,5	0,90	0,88	0,84	0,38
.5	20	75	0,5:2:7,5	0,94	0,86	0,90	0,28

В вышеописанных экспериментах исследовались смеси с постоянными соотношениями воды к хлористому водороду. В дальнейших опытах применялись подвижные фазы спирт — H₂O—HCl. Результаты приведены в таблице 2.

Данные таблицы 2 показывают, что величина R_1 ионов почти не вависит от концентрации соляной кислоты. Для перемещения вольфрама требуется относительно высокая концентрация соляной кислоты, что и подтверждается данными таблицы 1.

Изучено также влияние смеси двух кислот: соляной и уксусной в смеси с бутиловым и амиловым спиртами на величины R₁ ионов.

Таблица 3
Зависимость R₁ ионов рения, молибдена, ванадия и вольфрама
от состава полвижной фазы: спирт—СН-СООН—НС

Спирты		Кислоты		Величина R _f ионов			
назва- ние	объем, <i>мл</i>	сн₃соон	нсі	Re	Мо	v	W
Бутиловый	79	0	30	0,90	0,75	0,68	0,14.
	70	2	28	0,78	0,62	0,65	0,14
	70	5	25	0,76	0,60	0,64	0,10
	70	10	20	0,63	0,45	0,47	0,07
	70	20	10	0,50	0,38	0,46	0,01
	70	30	0	0,02	0,0	0,0	0,0
Амиловый	70	0	30	0,83	0,73	0,76	0,15
	70	2	28	0,74	0,57	0,60	0,15
	70	5	25	0,66	0,55	0,54	0,10
	70	10	20	0,54	0,48	0,46	0,05
	70	20	10	0,51	0,40	0,43	0,02
	70	30	0	0,02	0,0	0,0	0,0

Данные таблицы 3 показывают, что уменьшение доли соляной кислоты приводит к уменьшению величины R_f ионов, но присутствие уксусной кислоты способствует перемещению вольфрама даже при небольшом количестве соляной кислоты. При всех отношениях двух кислот с бутиловым и амиловым спиртами молибден и ванадий имеют очень близкие значения R_f и поэтому их зоны часто налагаются...

ՀԱԶՎԱԳՅՈՒՏ ՏԱՐՐԵՐԻ ՆՐԲԱՇԵՐՏ ՔՐՈՄԱՏԱԳՐԱՖԻԱ

IV. ՌԵՆԻՈՒՄԻ (VII), ՄՈԼԻԲԴԵՆԻ (VI), ՎԱՆԱԴԻՈՒՄԻ (V) ՈՒ ՎՈԼՖՐԱՄԻ (VI) ԲԱԺԱՆՈՒՄ ԵՎ ՆՈՒՅՆԱԿԱՆԱՑՈՒՄ ԲՈՒՏԻԼ– ԵՎ ԱՄԻՆԱՍՊԻՐՏՆԵՐԻ ԹԹՎԵՑՐԱԾ ԼՈՒԾՈՒՑԹՆԵՐՈՒՄ

1. U. AUSPULSUL

Վերընթաց նրբաշերտ քրոմատագրաֆիայի եղանակով, ալյումինիումի օքսիդի չամրացված շերտի վրա ուսումնասիրվել է ռենիումի, մոլիբդենի, վանադիումի և վոլֆրամի միկրոգրամային քանակների բաժանումն ու Ֆույնականացումը։ Որպես լուծիչ օգտագործվել են ջրի հետ չխառնվող սպիրաների (բուտիլային, իղոբուտիլային, ամիլային և իզոամիլային), աղաթթվային և բզոամիլային), աղաթթվային և բացախաթթվային լուծույթները։ Պարզվել է, որ թթվի բացակայության պայմաններում որպես շարժուն ֆազ բուտիլային և ամի-լային սպիրաները գործաղրելիս բոլոր ուսումնասիրվող իոները մնում են անջարժ, ստարտային գծի վրա։ Սպիրտներին աղաթթվի ավելացումը խիստ մնծացնում է իոների հարաբերական շարժունակությունը, իսկ սպիրտի և թթվի 1։3 հարաբերության դեպքում ռենիում, մոլիբդեն և վանադիում իոներն ունենում են առավելագույն Rլ արժեքներ՝ 0,80—0,90։ Վոլֆրամի իոնի շարժման համար պահանջվում է ավելի մեծ քանակությամբ աղաթթվի լուծույթ՝ ավելի ջան 25 մլ թթու 100 մլ սպիրտային խառնուրդին։ Քացախաթթվի ներկայությունը սպիրտների աղաթթվային լուծույթներում մեծացնում է վոլաֆրամի շարժունակությունը։

ЛИТЕРАТУРА

- 1. Д. С. Гайбакян, М. М. Атурян, Арм. хим. ж., 20, 696 (1967).
- 2. Д. С. Гайбакян, М. М. Атурян, там же, 20, 806. (1967)...