XXI, № 9, 1968

ОРГАНИЧЕСКАЯ ХИМИЯ

УДК 542.91

ВЗАИМОДЕЙСТВИЕ 1,3-ДИХЛОР-5-ФЕНИЛГЕКСЕНА-2 С АЛКИЛМАЛОНОВЫМИ ЭФИРАМИ И ПРЕВРАЩЕНИЯ ПОЛУЧЕННЫХ ПРОДУКТОВ

м. г. залинян, ю. а. буниатян и м. т. дангян

Синтезированы алкил-(3-хлор-5-фенилгексен-2-ил) уксусные кислоты. Этерификацией двузамещенных уксусных кислот получены соответствующие эфиры.

Ранее [1] сообщалось о получении с-замещенных о-кето-ү-лактонов окислением ү-хлоркротил замещенных уксусных кислот над-кислотами.

С целью получения новых а-замещенных в-кето-ү-лактонов синтезирован ряд алкил-(3-хлор-5-фенилгексен-2-ил)уксусных кислот. Синтез осуществлен взаимодействием 1,3-дихлор-5-фенилгексена-2 с алкилмалоновыми эфирами. Исходный 1,3-дихлор-5-фенилгексен-2 получен конденсацией а-хлорэтилбензола с хлоропреном [2], а а-хлорэтилбензол—гидрохлорированием стирола и видоизмененной методикой хлорирования этилбензола [3] в кварцевом реакторе, пропусканием хлора при освещении 250 вт лампой.

Двузамещенные эфиры малоновых кислот подвергнуты омылению водной щелочью, после чего декарбоксилированием в вакууме водоструйного насоса (остаточное давление 30—40 мм рт. ст.) получены соответствующие алкил-(3-хлор-5-фенилгексен-2-ил) уксусные кислоты. Этерификацией двузамещенных уксусных кислот синтезированы их этиловые эфиры с выходами 85—96% теории:

$$CH_{3}$$

$$C_{6}H_{5}CHCH_{3}CCI=CHCH_{3}CI+HCR(CO_{2}C_{2}H_{5}) \xrightarrow{NaOC_{2}H_{5}}$$

$$CH_{3}$$

$$C_{6}H_{5}CHCH_{2}CCI=CHCH_{3}CR(CO_{2}C_{2}H_{5})_{2} \xrightarrow{1. NaOH}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}CHCH_{2}CCI=CHCH_{2}CHRCOOH \xrightarrow{C_{2}H_{5}OH}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

Экспериментальная часть

Диэтиловые эфиры алкил-(3-хлор-5-фенилгексен-2-ил)малоновых кислот. К алкоголяту натрия, приготовленному из 300 мл сухого спирта и 13,8 г (0,6 г-атома) натрия, прибавляют 0,6 моля алкилмалонового эфира. Нагревают 1—1,5 часа, охлаждают и прибавляют
0,63 моля 1,3-дихлор-5-фенилгексена-2. Реакционную смесь при перемешивании нагревают на водяной бане до исчезновения щелочной
реакции (15—18 часов). После отгонки спирта осадок растворяют в
минимальном количестве воды, маслянистый слой отделяют от водного, водный слой экстрагируют эфиром. Эфирные вытяжки присоединяют к основному слою и высушивают над хлористым кальцием.
После отгонки эфира этиловые эфиры алкил-(3-хлор-5-фенилгексен2-ил)малоновых кислот перегоняют в вакууме. Выходы и физико-химические константы приведены в таблице 1.

 $C_8H_5CH(CH_3)CH_2CCI = CHCH_2C(R)(CO_2C_2H_5)_2$

Таблица 1

- 10	BMXOA, 0/0	Т. кип., °С/ <i>м.</i> м	п ²⁰	d40	MRD			CI, º/o	
R					найдено	вычислено	Молекулярная формула	найдено	вычислено
C ₂ H ₅	64,7	164—172/1	1,4995	1,0807	103,46	103,28	C21H29O4CI	9,68	9,32
C ₃ H ₇	60,8	180-192/2	1,4990	1,0659	108,66	107,90	C22H31O4CI	9,10	8,99
изо-С _а Н _т	49,6	194-202/3	1,5035	1,0765	108,41	107,90	C22H31O4CI	9,27	8,99
C4H,	59,2	198-210/3	1,4980	1,0605	113,00	112,52	C ₂₃ H ₃₃ O ₄ CI	8,94	8,69
изо-С4Н,	56,7	186—197/2	1,5000	1,0612	113,21	112,52	C ₂₃ H ₃₃ O ₄ CI	8,9 8,7	8,69
C8H11	80,5	204-210/2	1,4930	1,0461	117,36	117,14	C14H35O4CI	8,64	8,40
изо-С ₅ Н ₁₁	73,9	194-203/2	1,4950	1,0463	117,75	117,14		8,56	8,40

Алкил-(3-хлор-5-фенилгексен-2-ил)уксусные кислоты. К теплому 50% ному раствору 0,6 моля едкого натра прибавляют 0,2 моля диэтилового эфира алкил-(3-хлор-5-фенилгексен-2-ил)малоновой кислоты, при перемешивании нагревают на водяной бане. Через несколько минут реакционная смесь затвердевает. Продолжают нагревание еще 4 часа, затем образовавшуюся соль растворяют в воде, экстрагируют эфиром и подкисляют водный слой соляной кислотой до кислой реакции. Выделившееся густое маслообразное вещество экстрагируют эфиром, высушивают безводным сульфатом магния. После отгонки растворителя вещество декарбоксилируют под уменьшенным давлением до прекращения выделения углежислого газа и остаток перегоняют в вакууме.

Выходы, физико-химические константы и данные элементарного анализа двузамещенных уксусных кислот приведены в таблице 2.

Таблица 2

$C_4H_5CH(CH_3)CH_2CCI = CHCH_2CH(R)COOH$									
	Выхол, %/о	Т. кип., °С/мм	n _D ²⁰⁰	d ₄ ²⁰	.MR _D			C1, º/o	
R					найдено	вычислено	Молекулярная формула	найдено	вычислено
C ₂ H ₅	85	160—170/0,5	1,5200	1,0868	78,45	77,93	C16H21O2CI	13,00	12,65
C ₃ H ₇	91,8	195-196/3	1,5112	1,0627	83,04	83,04	C17H23O2CI	11,95	12,05
изо-С ₃ Н ₇	83,3	190-198/3	1,5145	1,07035	82,90	83,04	C17H23O2CI	12,60	12,05
C ₄ H ₉	92,3	195-202/2,5	1,5130	1,0574	87,68	87,66	C18H25O2CI	11,60	11,5
изо-С4Н,	70,8	195-200/2	1,5120	1,0533	87,88	87,66	C18H25O2CI	11,65	11,5
C5H11	89,1	202-205/2	1,5100	1,0432	92,45	92,27	C19H27O2CI	11,15	11,00
изо-С ₅ Н ₁₁	93,1	198205/2	1,5110	1,0435	92,58	92,27	C ₁₉ H ₂₇ O ₂ CI	10,98	11,00

Этиловые эфиры алкил-(3-хлор-5-фенилгексен-2-ил)уксусных кислот. Смесь 0,29 моля алкил-(3-хлор-5-фенилгексен-2-ил)уксусной кислоты, 70 мл сухого этилового спирта и 3,3 мл концентрированной серной кислоты кипятят на водяной бане 6-10 часов, после чего отгоняют избыточный спирт, а остаток выливают в пятикратный объем ледяной воды. Органический слой отделяют, а водный-экстрагируют эфиром. Объединенные органические слои нейтрализуют 10% ным раствором соды до щелочной реакции, промывают водой, сушат над безводным хлористым кальцием. После удаления эфира остаток перетоняют в вакууме.

Этиловые эфиры алкил-(3-хлор-5-фенилгексен-2-ил) уксусных кислот-жидкости слабо желтого цвета.

Выходы, физико-химические константы и данные элементарного анализа приведены в таблице 3.

					MRD			Cl. %	
R	Выход, °/о	Т. кнп., °С/ <i>мм</i>		Молекулярная формула	найдено	вычислено			
C ₂ H ₈	93,05	158—163/2	1,5030	1,0383	87,82	87,77	C ₁₈ H ₂₅ O ₂ Cl	11,72	11,5
C ₂ H ₇	87,1	158-161/1,5	1,5013	1,0269	92,56	92,39	C19H21O2CI	11,30	11,00
C ₄ H ₉	90,36	163—165/2	1,4980	1,0133	97,33	97,01	CaoHaoOaCI	10,68	10,54
230-C4H	96,2	158—161/2	1,4975	1,0133	97,24	97,01	CaoHaoOaCI	10,76	10,54
C5H11	85,02	170-173/1,5	1,4965	1,0050	101,96	101,63	C ₂₁ H ₃₁ O ₂ Ci	10,91	10,12
изо-С ₅ Н ₁₁	86,39	164—165/1,5	1,4960	1,0045	101,92	101,63	C21H31O2CI	10,01	10,12

Ереванский государственный университел

Поступило 13 VI 1967

Таблица 3

1,3-ԴԻՔԼՈՐ–5–ՖԵՆԻԼՀԵՔՍԵՆ–2–Ի ՓՈԽԱԶԴԵՑՈՒԹՅՈՒՆԸ ԱԼԿԻԼՄԱԼՈՆԱԹԹՈՒՆԵՐԻ ԷՍԹԵՐՆԵՐԻ ՀԵՏ ԵՎ ՍՏԱՑՎԱԾ ՆՅՈՒԹԵՐԻ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

U. A. QUINTSUL, S. U. PANTHUPSUL D. U. S. AUTISUL

Udhnhaid

1- 3-Դիքլոր-5-ֆենիլՀեքսեն-2-ի և ալկիլմալոնաթթուների Էսթերների փոխազդեցությունից սինթեղված են ալկիլ-(3-քլոր-5-ֆենիլՀեքսեն-2-իլ) մալոնաթթուների դիէթիլէսթերներ, որոնք Հիդրոլիզի և դեկարբօքսիլման են-թարկելով փոխարկվել են ալկիլ-(3-քլոր-5-ֆենիլՀեքսեն-2-իլ) քացախա-թթուների։ Վերջիններից սինթեղվել են Համապատասխան էթիլէսթերները։

ЛИТЕРАТУРА

- 1. М. Т. Дангян, М. Г. Залинян. Научные труды ЕГУ, 53, 15 (1956), 60, 9 (1957). 2. С. А. Вартанян, Ф. В. Дангян, К. Л. Сарксян, Дипломная работа, Ереван, ЕГУ
- 3. Препаративная органическая химия, Госхимиздат, Москва, 1959, стр. 187.