XXI, № 5, 1968

УДК 541.127+546.11.02.2+547.26

ОПРЕДЕЛЕНИЕ КОНСТАНТ СКОРОСТИ РЕАКЦИИ АТОМАРНОГО ДЕЙТЕРИЯ С ПРЕДЕЛЬНЫМИ СПИРТАМИ МЕТОДОМ ПРЕДЕЛОВ САМОВОСПЛАМЕНЕНИЯ

3. Г. ДЗОЦЕНИДЗЕ, К. Т. ОГАНЕСЯН и А. Б. НАЛБАНДЯН

Предложено использовать механизм горения молекулярного дейтерия для измерения констант скорости реакций атома D с молекулами различных соединений, являющихся ингибиторами процесса, методом нижнего предела самовоспламенения. Исследования проводились со смесью $3D_2 + O_2$. Полученные экспериментальные данные хорошо согласуются с математическими выражениями, вытекающими из критического условия самовоспламенения на пределе смесей $3D_2 + O_2 + X^0/_0$ ROH.

До настоящего времени методом нижнего предела самовоспламенения измерялись константы скорости реакций атомарного водорода и кислорода [1—3]. В данной работе мы решили применить его к изучению реакций атомов D с различными соединениями, используя механизм горения молекулярного дейтерия. Ранее методом ЭПР [4] нами было показано, что при давлениях, немного превышающих давление нижнего предела самовоспламенения смеси $3D_2 + O_2$, [D] \gg [O]. В этих условиях можно ограничиться учетом гетерогенной гибели атомов D. Для того, чтобы гибель активных центров протекала в диффузионной области реактор был покрыт окисью магния [5, 6]. Измерение нижнего предела проводилось в кварцевом сосуде d=80 мм. l=195 мм [7]. Механизм горения смеси $3D_2 + O_2$ при низких давлениях в присутствии ингибиторов — предельных спиртов может быть описан следующей совокупностью элементарных стадий;

$$OD + D_2 = D_2O + D, (1)$$

$$D + O_2 = OD + O, \tag{2}$$

$$O + D_2 = OD + D, \tag{3}$$

$$D + C_T \rightarrow \text{обрыв цепи},$$
 (4)

$$D + ROH = DH + R'OH. (5)$$

Как видно из схемы, при протекании реакции (5) происходит замена активной частицы — атома D на менее реакционноспособные спиртовые радикалы. Это приводит к увеличению скорости обрыва цепей, вследствие чего должно наблюдаться повышение давления нижнего предела. Условие самовоспламенения смесей $3D_2 + O_2 + X^0/_0$ ROH, принимая во внимание зависимость коэффициента диффузии активного центра от давления и температуры, выражается формулой [5]:

$$(P \cdot P_{O_2})^{\text{ROH}} = \frac{(K_4)_{\text{ROH}} \cdot 7^{2.5}}{2K_2 \cdot 0.97 \cdot 10^{19}} \left[1 + \frac{K_5 \cdot 0.97 \cdot 10^{19} \cdot P \cdot P_{\text{ROH}}}{(K_4)_{\text{ROH}} \cdot 7^{2.5}} \right], \quad (I)$$

где K_i — константа скорости;

P- общее давление на нижнем пределе самовоспламенения; P_{O} , $P_{\mathrm{ROH}}-$ парциальные давления кислорода и спирта на пределе; K_4- постоянная для данного сосуда и состава смеси, величина

равная
$$\frac{23.2 \cdot 760}{d^2 (273)^{1.5}} D_{769}^{273}$$
. (I')

Энергия активации E_5 реакции (5) и предэкспоненциальный множитель K_5 константы скорости K_5 могут быть найдены из уравнения (II):

$$\lg \frac{\lg x \cdot T^{2,5}}{a} = \lg \frac{K_5 \cdot 0,97 \cdot 10^{10}}{(K_4)_{ROH}} - \frac{E_5}{2,303RT}$$
 (II)

где $\lg \alpha = \frac{K_5}{2K_2}$ — тангенс угла наклона прямой, построенной по уравнению (I) в координатах $P \cdot P_{\text{O}_4}$, $P \cdot P_{\text{ROH}}$.

 $a = \frac{(K_4^2)_{\text{ROH}} \cdot T^{2.5}}{2K_9 \cdot 0,97 \cdot 10^{19}}$ — отрезок, отсеквемый этой прямой на оси ординат при данной температуре.

Проверкой правильности применения метода нижнего предела к исследуемой системе и надежности экспериментальных данных является выполнение равенства [5]:

$$a = \frac{(D_{H})_{ROH}}{(D_{H})_{3D_{2}+O_{3}}} \cdot (P \cdot P_{O_{3}})^{3D_{3}+O_{3}}.$$
 (III)

С целью выяснения влияния длины углеродной цепочки на эффективную константу скорости реакции (5), опыты проводились с добавками спиртов нормального строения CH_3OH , C_2H_5OH , κ - C_3H_7OH и κ - C_4H_9OH . Ниже, в таблице приведены нижные пределы самовоспламенения смеси $3D_2 + O_2$, содержащей различные количества ROH.

Таблица 1

<i>T</i> ,°C	D ₁ +O ₂ ,	Р _{3D_a+O_a+ XCH₃OH . мм Значения X в ⁰/₀}				Р _{3D_a+O_a+X н-С₁H₂OH; мм Значения X в ⁰/₀}				Р _{ЗD₉+О₉+Х и-С₁Н₀ОН имм Значения X в ⁰/₀}			
	P 3	2	4	6	8	0,05	0,20	0,30	0,40	0,05	0,10	0,15	0,25
570	5,9	4,89	5,04	5,24	5,36	4,96	5,16	5,24	5,45	4,97	5,04	5,21	5,37
590	5,3	4,58	4,70	4,84	4,97	4,64	4,81	4,90	5,09	4,67	7,74	4,86	5,03
61 0	4,5	4,28	4,4	4,49	4,62	4,35	4,51	4,55	4,63	4,30	4,41	4,53	4,66
630	4,0	4,02	4,11	4,21	4,33	4,09	4,23	4,26	4,34	4,10	4,14	4,20	4,36
650	3,6	3,82	3,92	3,98	4,08	3,89	3,98	4,05	4,11	3,86	3,93	4,00	4,12
670	3,3	3,67	3,71	3,83	3,92	3,73	3,80	3,88	3,94	3,69	3,74	3,78	3,87

Данные по зависимости предела от добавки этилового спирта для наглядности представлены на рис. 1.

Во всех случаях наблюдается одинаковая картина, чем больше содержание спирта, тем выше расположен предел по сравнению с пределом смеси $3D_2 + O_2$. На рисунке 2 в координатах $P \cdot P_0 - P \cdot P_{ROH}$ представлены результаты одной из серий опытов со смесями состава $3D_2 + O_2 + XC_2H_5OH$. В полном согласии с уравнением (I) опытные данные хорошо ложатся на соответствующие прямые. Зависимость $\log \frac{\log \alpha \cdot T^{2.5}}{a}$ от $\frac{1}{T}$, полученная по данным рисунка 2 и таблицы 1, приведена на рисунке 3. Из углов наклона прямых (рис. 3) и отрезков, отсекаемых ими на оси ординат, найдены следующие значения эффективных констант скорости реакций D+ROH (см. табл. 2).

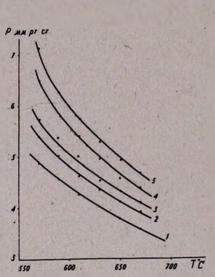


Рис. 1. Зависимость нижних пределов самовоспламенения смесей $3D_2 + O_2 + XC_2H_5OH$ от температуры. Значения X в процентах: I-0.0; 2-0.5; 3-1.0; 4-1.5; 5-2.0.

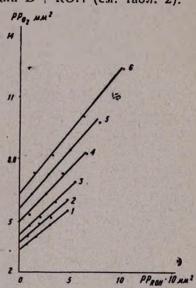
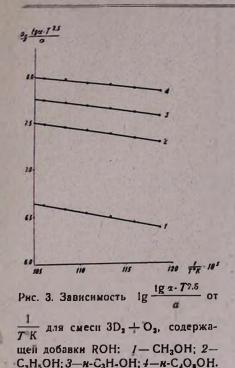



Рис. 2. Зависимость $P \cdot P_{O_2}$ от $P \cdot P_{C_2H_2OH}$ для смесей $3D_2 + O_2 \div + XC_2H_3OH$ при температурах в °C: I-670; 2-650; 3-630; 4-610; 5-590; 6-570.

В расчетах K_4 для смесей всех составов принималось равным 0,064 мм/сек град $^{3/4}$, полученному для смеси $3D_2+O_2$. Точность определения K_5° около $30^0/_0$, $E_5-\pm 1,0$ ккал/моль. Об удовлетворительном выполнении граничного условия уравнения (I), записанного в виде равенства (III), свидетельствует незначительное расхождение значений

отрезков "а" и произведений $\frac{(D_H)_{ROH}}{(D_H)_{3D_z+O_z}} \cdot P \cdot P_{O_z})^{3D_z+O_z}$.

В качестве примера в таблице 3 приводятся при различных температурах соответствующие величины, относящиеся к смеси $3D_2 + + O_3 + XC_2H_5OH$.

_	1	Таолица 2			
四年 安東	Регкция	Кв. 1010, сл ³ /сек	ЕБ. ККВЛ/МОЛЬ	K ₈ · 10 ¹⁴ (650° C).	
1	D-CH3OH	0,027	8,6	2,5	
2	D+C2H5OH	0,075	6,9	17,5	
3	D+H-C3H4OH	0,072	5,6	33,8	
4	D-H-H-C4HOH	0,087	4,9	60,0	
				1	

Таблица						
<i>T</i> , °C	a, .w.w²	$(P \cdot P_{O_s})^{3D_s + O_{s_s}} \mathcal{M}^2$				
570	6,3	5,9				
590	5,6	5,3				
610	4,9	4,5				
630	4,3	4,0				
650	3,9	3,6				
670	3,6	3,3				

В третьей графе этой таблицы вместо выражения $\frac{(D_H)_{ROH}}{(D_H)_{3D_4+O_3}}$

 $(P\cdot P_{O_3})^{3D_3+O_2}$ записано $(P\cdot P_{O_4})^{3D_2+O_3}$, так как $(D_H)_{ROH}\simeq (D_H)_{3D_1+O_2}$. Как видно из таблицы 1, по мере удлинения углеродной цепочки, константа скорости реакции D+ROH растет. Для спиртов C_2-C_4 такой рост обусловлен только понижением эффективной энергии активации E_5 . Снижение E_5 может быть следствием падения прочности связей C-H в спиртах нормального строения подобно тому, как это имеет место для парафиновых углеводородов [8].

Лаборатория химической физики АН АрмССР, Тбилисский государственный университет

Поступило 22 II 1968

ՀԱԳԵՑԱԾ ՍՊԻՐՏՆԵՐԻ ՀԵՏ ԱՏՈՄԱԿԱՆ ԴԵՅՏԵՐԻՈՒՄԻ ՌԵԱԿՑԻԱՆԵՐԻ ԱՐԱԳՈՒԹՅԱՆ ՀԱՍՏԱՏՈՒՆՆԵՐԻ ՈՐՈՇՈՒՄ ԻՆՔՆԱԲՈՑԱՎԱՌՄԱՆ ՍԱՀՄԱՆԻ ՄԵԹՈԴՈՎ

Ա. Գ. ՉՈՑԵՆԻՁԵ, Կ. Տ. ՀՈՎՀԱՆՆԻՍՑԱՆ և Ա. Բ. ՆԱԼԲԱՆԴՑԱՆ

Udhnhnid

Ինքնաբոցավառման ներքին սահմանի մեթոդը կիրառված է տարբեր միասությունների մոլեկուլների հետ ատոմական դեյտերիումի ռեակցիաների արասության հաստատունները որոշելու համար։ ԷՊՈ մեխոդով կատարված մեր ճախորդ փորձերի հիման վրա պարզվել է, որ ճպատակահարմար է փորձերը կատարել $3D_2 + O_2$ խառնուրդի միշ ջոցով։

Հոդվածում բերված է $3D_2 + O_3 + XROH$ [սառնուրդների ալրման մեխանիզմը, Ինքնարոցավառման ներջին սահմանը չափել ենք ստատիկ վակուումալին տեղակալանքի վրա, Որպես ռեակտոր ծառայել է կվարցե անոթել (d=80 մմ, l=195 մմ), որի պատերը ներսից ծածկված են եղել մադներիումի օքսիդով, Ջերմաստիճանը փոփոիսվել է 570—670°C-ի սահմաններում, Ստացված արդլունքները բավարարում են $3D_2 + O_3 + XROH$ [սառնուրդի ինքնաբոցավառման կրիտիկական պալմաններից հետևող բոլոր հավասարումեներին, Որոշված է D+ROH ռեակցիալի տարրական ակտի արագության էֆեկտիվ հասաատունի արժեքը, Տարբեր սպիրտների համար նրանց արժեքները հետևլալներն են. $K_{\text{CH}_4\text{OH}} = 0,027 \cdot 10^{-10}$ exp (-8600/RT) սմ 3 /մոլեկուլ վրկ, $K_{\text{C}_1\text{H}_4\text{OH}} = 0,075 \cdot 10^{-10}$ exp (-6900/RT) սմ 3 /մոլեկուլ Վրկ, $K_{\text{S-C}_1\text{H}_4\text{OH}} = 0,087 \cdot 10^{-10}$ exp (-4900/RT) սմ 3 /մոլեկուլ վրկ,

ЛИТЕРАТУРА

- 1. Н. И. Горбань, А. Б. Налбандян, ДАН СССР, 132, 1335 (1960).
- 2. В. В. Азатян, А. Б. Налбандян, Цуй Мен-Юань, ДАН СССР, 147, 361 (1962).
- 3. В. В. Азатян, А. Б. Намбандян, Цуй Мен-Юань, ДАН СССР, 149, 1095 (1963).
- 4. З. Г. Дзоценидзе, К. Т. Оганесян, А. Б. Налбандян, Арм. хим. ж., 21, 68 (1968).
- 5. В. В. Азатян, Кандидатская диссертация, ИХФ, Москва, 1963.
- 6. В. В. Азатян, В. В. Воеводский, А. Б. Налбандян, Кинетика и катализ, 2, 340 (1961).
- 7. К. Т. Оганесян, А. Б. Налбандян, Н. И. Парсамян, ДАН АрыССР, 30, 159 (1965).
- 8. В. И. Веденеев, Л. В. Гурвич, В. Н. Кондратьев, В. А. Медведев, Е. Л. Франкевич, "Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону», Москва, 1962.