XXI, № 4, 1968

УДК 542.91 + 547.757

производные индола

XIX. ДИАЛКИЛАМИНОЭТИЛОВЫЕ ЭФИРЫ ЗАМЕЩЕННЫХ ИНДОЛ-5-КАРБОНОВЫХ КИСЛОТ

3. В. ЕСАЯН, А. Г. ТЕРЗЯН, С. Н. АСРАТЯН, Е. Г. ДЖАНПОЛАДЯН и Г. Т. ТАТЕВОСЯН

Описан синтез диалкиламиноэтиловых эфиров некоторых 2-метил-3-алкилиндол-5-карбоновых кислот, а также 1,2,3,4-тетрагидрокарбалол-6-карбоновой кислоты и ее 1-метилпроизводного. Предварительное изучение фармакологических свойств гидрохлоридов этих аминоэфиров показало, что некоторые из них являются активными местными анестетиками.

п-Аминобензойная кислота и многие ее производные являются биологически активными веществами.

Соли аминоэфиров этой кислоты и ее производных нашли применение в качестве местных анестетиков; из них наиболее употребительны общеизвестные препараты новокаин (I, $R=C_2H_5$, R'=H) и дикаин (I, $R=CH_3$, $R'=H-C_4H_9$).

Структурными аналогами *п*-аминобензойной кислоты являются 2-метил-3-алкилиндол-5-карбоновые кислоты, аминоэфиры которых (II), описываемые в настоящей статье, синтезированы с целью изучения их местноанестетических свойств.

Основность атома азота, находящегося в *п*-положении к карбоксильной группе, в соединениях (II) сильно понижена по сравнению с производными *п*-аминобензойной кислоты. Казалось бы, что это обстоятельство должно сильно сказаться на анестетических свойствах соответствующих аминоэфиров, поскольку в литературе имеются данные, согласно которым основность активных местных анестетиков колеблется в определенных, довольно узких пределах (рК_в 5,02—5,94) [1]. Можно было, однако, ожидать, что в данном случае снижение основности атома азота, включенного в пиррольное кольцо, не окажет сильного влияния на анестетические свойства аминоэфиров, так как в обоих рассматриваемых рядах максимальная основность аминоэфиров должна определяться не аминогруппой, непосредственно связанной с ароматическим ядром, а диалкиляминогруппой, находящейся в боковой алканольной цепи.

Этиловые эфиры (III) исходных кислот индольного ряда, некоторые из которых описаны в литературе, получены по реакции Фишера—конденсацией гидрохлорида п-карбоксифенилгидразина с метилалкилкетонами в спиртовом растворе серной кислоты; выходы эфиров (III) колебались в пределах 59—75%. Аминоэфиры (IV) получались переэтерификацией, осуществлявшейся кипячением эфиров (III) с диалкиламиноэтанолом в толуольном растворе в присутствии каталитических количеств натрия; выходы аминоэфиров составляли 65—87%.

Тем же путем из циклогексанона и 2-метилциклогексанона получены этиловые эфиры 1,2,3,4-тетрагидрокарбазол-6-карбоновой кислоты [2] и ее 1-метилпроизводного и диалкиламиноэтиловые эфиры этих кислот (V), которые могут рассматриваться как аналоги соединений (IV) с заместителями в положениях 2 и 3, образующими дополнительное карбоциклическое кольцо.

$$\begin{array}{c} \text{HO}_{2}\text{C} \\ \text{NHNH}_{2} \cdot \text{HCI} \end{array} \xrightarrow{\text{CH}_{2}\text{R'}} \xrightarrow{\text{C}_{2}\text{H}_{5}\text{O}_{2}\text{C}} \xrightarrow{\text{R'}} \xrightarrow{\text{R'}} \xrightarrow{\text{CH}_{3}} \\ \text{III} \\ \xrightarrow{\text{R}_{2}\text{NCH}_{2}\text{CH}_{3}\text{O}_{2}\text{C}} \xrightarrow{\text{R'}} \xrightarrow{\text{C}_{2}\text{H}_{5}\text{O}_{2}\text{C}} \xrightarrow{\text{R'}} \xrightarrow{\text{C}_{1}\text{H}_{2}\text{CH}_{3}\text{O}_{2}\text{C}} \xrightarrow{\text{R'}} \\ \xrightarrow{\text{IV}} \xrightarrow{\text{R'}} \xrightarrow{\text{CH}_{3}} \xrightarrow{\text{R'}} \xrightarrow{\text{$$

На первичных тестах изучались местноанестетические свойства гидрохлоридов и йодметилатов аминоэфиров (IV) и (V). Анестетически активными оказались только гидрохлориды, причем активность их понижается с увеличением радикала R', находящегося в положении 3 индольного ядра. Наиболее активными оказались гидрохлориды диметиламино- и диэтиламиноэтиловых эфиров 2,3-диметилиндол-5-карбоновой кислоты (IV, R'= CH_3 , R= CH_3 и C_2H_5).

Эти препараты проявляют как терминальную, так и проводниковую анестетическую активность в различной степени; лучший эффект отмечался при применении $0.1^0/_0$ -ных растворов. Действие этих препаратов при инфильтрационной анестезии аналогично действию дикаина, причем гидрохлорид соединения (IV, R'= CH_3 , R= C_2H_5) дейстует несколько продолжительнее последнего.

В высоких концентрациях указанные препараты проявляют местнораздражающее действие; место введення раствора отекает. Поэтому они не пригодны для проводниковой и плоскостной анестезии. Однако, $0.1^6/_0$ -ные растворы этих препаратов могут применяться для инфильтрационной анестезии.

Токсичность препаратов определялась на мышах; гидрохлорид аминоэфира (IV, $R'=CH_3$, $R=C_2H_5$) по токсичности аналогичен дикаину, а остальные менее токсичны, чем дикаин.

Экспериментальная часть

Этиловые эфиры 2-метил-3-алкилиндол-5-карбоновых кислот (III). Смесь 37,7 г (0,2 моля) гидрохлорида п-карбоксифенилгидразина, 0,2 моля метилалкилкетона, 200 мл безводного спирта и 16 мл концентрированной серной кислоты кипятилась с обратным холодильником в течение 12 часов. После охлаждения темно-окрашенный раствор с осадком образовавшейся аммониевой соли сливался в 600 мл воды, выделившееся полукристаллическое вещество экстрагировалось эфиром, эфирный раствор промывался разбавленным раствором соды, затем водой и высушивался над безводным сернокислым натрием. После удаления эфира твердый остаток перекристаллизовывался из сухого эфира. Выходы и свойства эфиров (III), получавшихся в виде светло-желтых кристаллических веществ, приведены в таблице 1.

Таблица

				1					44 1
III. R'=	0/0		Молекуляр-	на	А н		и 3, ⁰ ₀		
	Выход	°C	ная формула	С	Н	N	С	Н	N
C ₄ H ₉	69	100—102	C ₁₆ H ₂₁ NO ₂	74,06	8,45	5,71	74,12	8,10	5,40
C ₅ H ₁₁	61	68-70	C17H23NO2	74,84	8,12	5,22	74,72	8,42	5,12
C ₆ H ₅ CH ₂ CH ₂	59	132—133	C20H21NO2	78,20	7,11	4,80	78,17	6,84	4,56
C ₂ H ₅ O ₂ C		139—140	C ₁₆ H ₁₉ NO ₂	74,99	7,52	5,39	74,70	7,39	5, 4 4

Тем же путем—конденсацией гидрохлорида n-карбоксифенилгидразина с циклогексаноном и 2-метилциклогексаноном—получены этиловые эфиры 1,2.3,4-тетрагидрокарбазол-6-карбоновой кислоты [2] и ее 1-метилпроизводного, а также описанные в литературе [3] эфиры кислот (III, $R' = CH_3$, C_2H_5 , C_3H_7).

Пиалкиламиноэтиловые эфиры 2-метил-3-алкилиндол-5-карбоновых кислот (IV). Смесь 0,25 моля диалкиламиноэтанола и 280 мл сухого толуола кипятилась с обратным холодильником, соединенным с колбой через водоотделитель, до прекращения выделения влаги, после чего прибавлялось 0,069 г (0,003 г-ат.) натрия и 0,05 моля эфира (III). Кипячение смеси продолжалось еще 6—7 часов, после чего отгонялся толуол. Остатки толуола и диалкиламиноэтанола удалялись при 40 мм остаточного давления. Оставшийся продукт обрабатывался 5%-ным раствором едкого натра, экстрагировался эфиром, эфирный слой промывался разбавленной соляной кислотой, водный слой отделялся, промывался эфиром, подщелачивался едким натром и экстрагировался эфиром. После сушки над сернокислым натрием.

IV		1			Анализ, 0,0						Хлор	гидр	аты	Подметилат			
R' R		0/0	(0		найдено вычислено					C1, 0/0		0/0	J.		00		
	R	Выход,	Т. пл., °C	Молекулярная формула	С	н	N	С	н	N	Т. пл., °С	найдено	вычис-	Т. ил., С	найдено	Вылис-	
CH ₃	СН3	87	136—7	C,5H20N2O2	69,35	7,71	10,93	69,23	7,69	10,76	2178	11,99	11,97	214 5	31,28	31,59	
C ₂ H ₅		77	109—10	C ₁₆ H ₂₂ N ₂ O ₂	70,23	7,83	10,56	70,07	8,03	10,21	176 -7	11,47	11,43	_	-	_	
C ₃ H ₇		67	90—2	C17H21N2O2	71,10	8,52	10,00	70,83	8,33	9,72	183-5	10,56	10,94	185—7	29,12	29,53	
C ₄ H ₉		80	82-4	C ₁₈ H ₂₆ N ₃ O ₃	71,48	8,60	9,50	71,52	8,60	9,27	1878	10,22	10,48	203 1	28,86	28,60	
C5H11		77	72-4	C ₁₉ H ₃₈ N ₂ O ₂	72,33	8,80	8,70	72,15	8,86	8,86	186—7	9,70	10,07	210-11	27,92	27,72	
C ₆ H ₅ CH ₂ CH ₂		76	100-2	C23H26N2O2	75,75	7,76	8,10	75,42	7,42	8,00	206 -7	9,46	9,18	213-5	26,23	25,81	
CH ₃	C ₂ H ₅	75	W-	C ₁₇ H ₂₁ N ₂ O ₂	70,55	8,64	9,55	70,83	8,33	9,72	223-5	10,75	10,93	185-7	29,75	29,53	
C ₂ H ₅		73		C ₁₈ H ₂₆ N ₂ O ₂	71,76	8,80	8,89	71,52	8,60	9,27	140-2	10,60	10,48	ter-res	-	-	
C ₃ H ₇		65	6870	C19H28N3O3	72,38	9,02	8,86	72,15	8,86	8,86	*	-		1734	27,78	27,72	
C ₁ H ₉		67	567	C ₂₀ H ₃₀ N ₂ O ₂	72,65	8,68	8,76	72,72	9,09	8,49	*	-	-	122-3	26,67	36,93	
C ₅ H ₁₁	,	67	_	C31H33N2O2	73,33	9,60	8,34	73,25	9,30	8,14	*	-	-	1968	26,43	26,13	
C ₆ H ₅ CH ₂ CH ₂		84	-	C ₂₄ H ₃₀ N ₂ O ₂ **	63,43	6,86	4,56	63,15	6,66	4,91	147 8**	Q	_		-		

Таблица 3

V		7														
Н	CH ₃	82	155—7	C ₁₇ H ₂₃ N ₂ O ₂	71,23	7,71	9,54	71,32	7,69	9,79	211-3	11,07	11,00	220 -1	30,03	26,67
CH ₃	CH ₃	73	120—1	C18H24N2O2	71,87	8,05	9,23	72,00	8,00	8,33	1413	10,57	10,54	182 - 3	28,64	28,73
Н	C ₂ H ₅	60	83-4	C18H38N2O2	73,02	8,51	8,60	72,61	8,24	8,91	233 - 5	9,91	10,12	232 - 3	28,32	27,85
CH ₃	C ₂ H ₅	75	*	C ₂₀ H ₂₈ N ₂ O ₂	73,23	8,90	8,55	73,55	8,58	8,58	154-5	9,59	9,79	135-6	27,40	27,11

^{*} Не кристаллизовалось.

^{*} Хлоргидрт гигроскопичен . ** Анализ и т. ил. цитрата.

эфир отгонялся и оставшееся вещество перекристаллизовывалось из сухого эфира кипячением с углем. Аминоэфиры получались в виде бесцветных кристаллов, а некоторые в виде вязких масел; последние при перегонке в вакууме разлагались (см. табл. 2).

Так же были получены диалкиламиноэтиловые эфиры 1,2,3,4-тетрагидрокарбазол-6-карбоновой кислоты и его 1-метилгомолога (см. табл, 3).

Гидрохлориды и йодметилаты осаждались из эфирных растворов. Цитрат аминоэфира (IV, $R=C_2H_5$, $R'=C_6H_3CH_2CH_2$) осажден из эфирного раствора спиртовым раствором лимонной кислоты.

Институт тонкой органической химин АН АрмССР

Поступило 23 11 1967

ԻՆԴՈԼԻ ԱԾԱՆՑՅԱԼՆԵՐ

XIX. ՏԵՎԱԿԱԼՎԱԾ ԻՆԴՈԼ-5-ԿԱՐԲՈՆԱԹԹՈՒՆԵՐԻ ԳԻԱԼԿԻԼԱՄԻՆԱԷԹԻԼ ԷՍԹԵՐՆԵՐ

Չ. Վ. ԵՍԱՅԱՆ, Ա. Գ. ԹԵՐԶՅԱՆ, Ս. Ն. ՀԱՍՐԱԹՅԱՆ, Ե. Գ. ՋԱՆՊՈԼԱԳՅԱՆ Լ Գ. Տ. ԹԱԴԵՎՈՍՅԱՆ

Ամփոփում

Հոդվածում նկարագրվում է մի քանի 2-մեթիլ-3-ալկիլինդոլ-5-կարբոնաթթեուների, ինչպես նաև 1,2,3,4-տետրահիդրոկարթաղոլ-6-կարբոնաթթեվի և նրա 1-մեթիլ աժանցյալի դիալկիլամինաէթիլ էսթերների սինթեղը, Ալդամինաէսթերների քլորջրածնական աղերի ֆարմակոլոգիական ուսումնասիրությունը ցույց տվեց, որ նրանցից մի քանիսը հանդիսանում են ակտիվ լոկալ (տեղական) անեստետիկներ։

ЛИТЕРАТУРА

- M. E. Krahl, A. K. Keltch, G. M. A. Clowes, J. Pharmacol., 68, 350 (1940); A. V. Tolstoouhov, Ionic Interpretation of Drug Action in Chemotherapeutic Research. Chem. Publ. Corp., New-York, 1955, p. 59.
- 2. W. M. Collar, S. G. P. Plant, J. Chem. Soc., 1926, 808,
- 3. R. Rothstein, B. N. Fettalson, C. r., 242, 1042 (1956).