

XXI, № 4, 1968

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УЛК 678.744.422

ИНИЦИИРОВАНИЕ ПОЛИМЕРИЗАЦИИ ВИНИЛАЦЕТАТА В ВОДНЫХ РАСТВОРАХ СИСТЕМОЙ ПЕРСУЛЬФАТ—ДИЭТИЛАМИНОЭТАНОЛ

О. А. ЧАЛТЫКЯН, Т. Т. ГУКАСЯН, Н. М. БЕЙЛЕРЯН и Р. А. АСАТРЯН

Определена скорость полимеризации винилацетата (ВА), инициированной системой персульфат калия — диэтиламиноэтанол, по времени появления мути в водном растворе. В отсутствии кислерода в растворе полимеризация ВА начинается сразу. С увеличением концентрации диэтиламиноэтанола уменьшается средний молекулярный вес поливинилацетата (ПВА). Разветвленность образовавшегося ПВА меньше при доступе воздуха в систему с инициатором персульфат—диэтиламиноэтанол.

Наши предыдущие исследования показали [1], что с кинетической точки зрения реакция персульфата калия с диэтиламиноэтанолом сложна и очень чувствительна к следам кислорода.

Результаты кинетических исследований привели к заключению, что диэтиламиноэтанол сильно облегчает и ускоряет гомолнтический распад персульфата с переходом в радигально-цепную реакцию. В той же работе было показано также, что виниловые мономеры ингибируют реакцию персульфата с диэтиламиноэтанолом, протекающую с достаточно большой скоростью также и при комнатной температуре. Поскольку при реакции персульфат—диэтиламиноспирты помимо SO. ион-радикалов генерируются также и аминоспиртовые радикалы (A'), то можно было ожидать, что системы персульфат—диэтиламиноспирты проявят интересные особенности как инициаторы полимеризации. Настоящая статья посвящена результатам исследования этого вопроса.

Описание опытов и обсуждение результатов

Персульфат (P) очищался пятикратной перекристаллизацией из бидистиллята. Диэтиламиноэтанол (A) дважды перегонялся в атмосфере азота, а винилацетат перегонялся после форполимеризации. Началом полимеризации считалось появление мути. Первым долгом было установлено, что при (P) $_0$ < $5\cdot 10^{-1}$ моль/л, (A) $_0$ < $5\cdot 10^{-2}$ моль/л, 1< 10°C муть появляется с периодом индукции больше 200 минут.

В таблице 1 приведены данные, относящиеся к влиянию диэтиламиноэтанола на скорость полимеризации винилацетата (инициированной персульфатом) в смесях последнего с водой.

Таблица 1

(P) ₀ ·10 ⁻² · моль/л	- 19716	Общий объем, мл			Время
	(A) ₀ . моль/л	водная фаза	иономер	t, °C	появления мути, мин.
5	-	40	8	40	>240
5	_	40	20	50	16
0,5	0,1	40	8	40	6 -
5	0,1	40	8	40	3

Зависимость времени появления мути (т) от начальных концентраций персульфата, а также от температуры опыта приведена на рисунке 1 в координатах минуты—температура. На рисунке 2 изображена зависимость т от начальной концентрации амина. Из данных, приведенных в таблице 1 и изображенных на рисунках 1 и 2, следует,

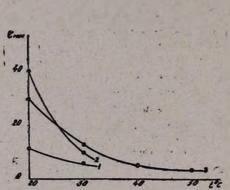


Рис. 1. Зависимость времени появления мути (τ) от температуры. Условия опытов: 1) $P=:1\cdot 10^{-2}$ моль/ Λ , $A==5\cdot 10^{-2}$ моль/ Λ , 2) $P=5\cdot 10^{-3}$ моль/ Λ , $A=1\cdot 10^{-1}$ моль/ Λ , 3) $P=7,5\cdot 10^{-3}$ моль/ Λ , $A=5\cdot 10^{-2}$ моль/ Λ .

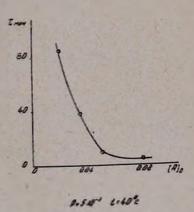


Рис. 2. Зависимость (τ) от начальной концентрации амина. Условия опытов: $P=5\cdot 10^{-3}$ моль/ α , $t=40^{\circ}$.

что диэтиламиноэтанол вызывает, даже при 20°, гомолитический распад персульфата в водных растворах и система персульфат—диэтиламиноэтанол способна инициировать при этой температуре виниловую полимеризацию в водных смесях. Для выяснения влияния аминоспирта на среднюю длину цепи изучена зависимость средней степени полимеризации от концентраций компонентов инициирующей системы и температуры. (Молекулярные веса проб поливинилацетата и поливинилспирта (ПВС) определены вискозиметрически).

Зависимость молекулярного веса и средней степени полимеризации от $(P)_0$ и $(A)_0$, а также от температуры приведена в таблице 2.

Таблица 2

(P) ₀ ·10 ⁻² . моль л	(A) ₀ .10 ⁻² , моль/ <i>A</i>	t, °C	т, мин	$\overline{M}_{\Pi B A}$	$\overline{P}_{\Pi BA}$
0,5	10	20	30	53190	618
0,5	10	30	13	49120	571
0.5	10	40	6	35940	418
0,5	10	50	4	30830	358
0,75	5	20	40	131400	1528
0,75	5	30	11	90120	1048
1,0	5	20	12	145400	1691
1,0	5	30	9	111400 -	1300
0,5	2	40	85	254600	2960
0,5	3,5	40	38	134400	1563
0,5	5,0	40	9	87560	1018
0,5	10,0	40	6	35940	418
5,0	10,0	40	0	140500	1634

Из данных таблицы 2 можно заключить, что а) когда в системе имеется избыток аминоспирта с повышением температуры средняя степень полимеризации ($\bar{P}_{\Pi BA}$) уменьшается; б) при постоянной температуре с увеличением концентрации аминоспирта $\bar{P}_{\Pi BA}$ уменьшается; в) \bar{P} зависит от отношения (P) $_0$ /(A) $_0$. С увеличением последнего \bar{P} также увеличивается. Установленные закономерности можно было бы объяснить, предполагая наличие конкуренции нескольких элементарных актов с участием аминоспирта. Аминоспирт, вызывая гомолитический распад персульфата, одновременно может принимать участие в следующих элементарных актах:

0) акт инициирования:

$$P + A = PA \xrightarrow{a} SO_{4}^{-} + (C_{2}H_{5})_{2}NCHCH_{2}OH + HSO_{4}^{-}$$
 $P' + M \xrightarrow{6} PM'$

1) акт развития:

$$PM' + \pi M \xrightarrow{B} PM_{(n+1)}$$

$$P' + A \xrightarrow{\Gamma} A' + HSO_{4}^{-}$$

$$A' + S_{2}O_{8}^{2-} \xrightarrow{\Gamma'} \Pi_{1} + HSO_{4}^{-} + P'$$

2) акт обрыва:

$$PM_{(n+1)} + A \xrightarrow{\pi} PMH_{n+1} + A$$
 $2A \xrightarrow{e}$ неактивный продукт
 $PM_n + PM_n \xrightarrow{ж}$ мертвый полимер

Из такого представления следует, что увеличение концентрации аминоспирта может привести, с одной стороны к бесполезному для полимеризации расходованию ионов-радикалов SO_4^- (P^*) (сравните акты 1г) и к обрыву растущей цепи (акт 2д), т. е. к уменьшению \overline{P} .

При предполагаемой передаче цепи через радикал А получается молекула аминоспирта.

Таким образом, здесь речь идет о конкуренции следующих актов 0б с 1г и 2д с 2ж. Чтобы сравнить средний молекулярный вес поливинилацетата, полученного в присутствии аминоспирта, с таковым, полученным в его отсутствии, нами получен ПВА в водных растворах, применяя в качестве инициатора только персульфат. Такой ПВА оказался трудно растворимым в метаноле. Это возможно в случае, если ион-радикалы SO₄ вызывают разветвление полимерной молекулы:

$$R = \begin{pmatrix} CH_{2} - C - & H & CH_{3} - CH_{4} - C - & CH_{3} - CH_{5} - CH_{5}$$

Аналогичный акт может иметь место и с участием аминного радикала. Дальше цепь растет с метильного углерода. В таком случае не должно быть соответствия между средними степенями полимеризации ПВА и соответствующего ПВС. Синтезированный нами ПВА подвергался омылению (омыление проводилось в среде сухого метанола в присутствии малых количеств гидроокиси натрия) и вискозиметрически определялся средний молекулярный вес образовавшегося ПВС.

Полученные данные приведены в таблице 3.

2344			34.71		Таблица 3
$(P)_0 \cdot 10^{-3}$, моль/ π	$(A)_0 \cdot 10^{-2},$ моль/л	t, °C	М, ПВА	м, пвс	м пвс
5	0	50	230400	23080	~10
5	10	30	49120	16330	3,0
7,5	5	30	90120	16680	5,4
10,0	5	30	111400	17220	6,0
5	3,5	- 40	134400	13900	9,7
5	5	40	87560	18120	4,8

Из данных таблицы 3 следует, что при наличии диэтиламиноэтанола в среде получается низкая \overline{P} для (ПВА), но уменьшается вероятность разветвления макромолекулы (в отсутствии аминоспирта отношение М ПВА/М ПВС \cong 10). По-видимому, это обусловлено актом:

$P_n + AH \longrightarrow P_nH + A$

Изучалось также распределение по молекулярным весам методом турбидиметрического титрования. Полученные данные изображены на

рисунке 3 в координатах: $\Delta n/\Delta v - V$, где V—объем добавленного осадителя (воды), n— показание гальванометра (число делений на шкале). Кривая 1 относится к (ПВА), полученному при 50° в отсутствии диэтиламиноэтанола, а кривые 2 и 3 относятся к случаю, когда компонентом инициирующей системы является, кроме персульфата, еще диэтиламиноэтанол $(5 \cdot 10^{-2} \text{ моль/л}$ в случае кривой 2 и $1 \cdot 10^{-1} \text{ моль/л}$ в случае кривой 3). (Надо отметить, что в присутствии аминоспирта всегда получается распределение, изображенное кривыми 2 и 3).

Из рисунка 3 следует, что когда днэтиламиноэтанол отсутствует, полу-

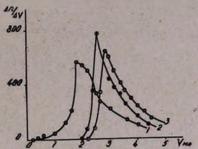


Рис. 3. Молекулярно-весовое распределение ПВА. Условия опытов: 1) при инициировании полимеризации одним персульфатом. $P=5\cdot10^{-2}$ моль/л, A=0, $t=50^{\circ}$, 2) $P=5\cdot10^{-3}$ моль/л, $A=5\cdot10^{-2}$ моль/л, $t=30^{\circ}$, 3) $P=5\cdot10^{-3}$ моль/л, $A=1\cdot10^{-1}$ моль/л, $t=30^{\circ}$.

ченный ПВА более полидисперсен и в нем содержаться фракции с большим молекулярным весом. Последнее обусловлено, по-видимому, образованием разветвленного ПВА. В пользу такого вывода говорит еще факт трудной растворимости в метаноле ПВА, полученного в отсутствии аминоспирта. В присутствии аминоспирта распределение более узкое и отсутствуют фракции с большим молекулярным весом. При проведении полимеризации в атмосфере азота в интервале температур $20-40^{\circ}$ с различными "концентрациями персульфата и аминоспирта полученный ПВА не растворялся в метаноле в течении шести месяцев. Надо отметить, что при 20° , $(P)_0 = 5 \cdot 10^{-3}$ моль/л и $(A)_0 = -5 \cdot 10^{-2}$ моль/л полимеризация начиналась сразу после добавления инициатора. В отсутствии аминоспирта одним лишь персульфатом концентрации $5 \cdot 10^{-3}$ моль/л и 50° полимеризация инициируется с периодом индукции, равным 20 минутам.

Образование нерастворимой в метаноле фракции ПВА в отсутствии кислорода говорит в пользу того, что аминный радикал также может способствовать разветвлению макромолекулы, отрывая водород:

$$R = \left(CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{2} - CH_{3} - CH_{$$

а кислород конкурирует с макромолекулой актом:

$$A' + O_2 \longrightarrow AO_2$$

Из изложенного следует, что при применении инициирующей системы персульфат—аминоспирты кислород играет положительную роль.

Ереванский государственный университет

Поступило 19 1 1957

ՋՐԱՑԻՆ ԼՈՒԾՈՒՑԹՆԵՐՈՒՄ ՎԻՆԻԼԱՑԵՏԱՏԻ ՊՈԼԻՄԵՐՄԱՆ ՀԱՐՈՒՑՈՒՄ ՊԵՐՍՈՒԼՖԱՏ-ԴԻԷԹԻԼԱՄԻՆԱԷԹԱՆՈԼ ՍԻՍՏԵՄՈՎ

2. 2. QUIPHASUL, P. S. JOHAUUSUL, L. U. POSIBPSUL L. P. U. UUUSPSUL

Ամփոփում

Պերսուլֆատ—դիէթիլամինաէթանոլ ռեակցիան կինետիկական տեսակետից շատ բարդ է և շատ զգալուն թթվածնի հետքերի հանդեպ։

Ծնթադրվել է, որ այդ ռեակցիան ռադիկալալին-շղթայական է և միջանկլալ գոլանում է ՏՕ₄ իոն-ռադիկալ. Այս ենթադրությունը ստուգելու համար որպես ագատ ռադիկալների որսիչ վերցված է վինիլացետատր։

Ստացված արդլուն քներից հետևում է, որ դիէթիլամինաէթանոլի ներկալությամր, նուլնիսկ 20°C-ում պերսուլֆատը ենթարկվում է հոմոլիտիկ ձեղքման, Ջրալին ֆազի պղտորման համար պահանջվող ժամանակամիջոցը կախված է փորձի պալմաններից, Թթվածնի լրիվ բացակալության պալմաններում պոլիմերման հարուցումը տեղի է ունենում ակընթարթորեն։

Պերսուլֆատի հաստատուն կոնցենտրացիալի դեպքում ամինասպիրտի կոնցենտրացիալի աճի հետ տեղի է ունենում ստացված պոլիվինիլացետատի միջին մոլեկուլալին կչռի նվազում, բալց ՊՎԱ-ի օճառացմամբ ստացված համապատասխան ՊՎՍ-ի միջին մոլեկուլալին կչիռների հարաբերությունը փոքրանում է, Ստացված ՊՎԱ-ը պոլիդիսպերս չէ, ենթադրվում է, որ ամինասպիրտը թթվածնի առկալությամբ հանդիսանում է նաև շղթալի փոխանցող, Միալն պերսուլֆատի ներկալությամբ ստացված ՊՎԱ-ն շատ վատ է լուծվում մեխանոլում, իսկ ամինի ներկալությամբ ստացվածը հեշտ է լուծվում։ Թթվածնավուրկ միջավալրում ստացված ԳԱԱ-ը նուլնիսկ 6 ամսվա ընխացրում չի լուծվում մեխանոլում։

ЛИТЕРАТУРА

1. Н. М. Бейлерян, Т. Г. Гукасян, Р. М. Акопян, О. А. Чалтыкян, Арм. хим. ж... 21, (1968).