2 Ц 3 Ч Ц 4 Ц 5 Р Т Р Ц 4 Ц 5 Ц Т И Ц 4 Р Р АРМЯНСКИЯ ХИМЬЧЕСКИЯ ЖУРНАЛ

XXI, № 11, 1968

УДК 542.91+547.464.6

МОЛЕКУЛЯРНЫЕ ПЕРЕГРУППИРОВКИ

VII. СИНТЕЗ И ПРЕВРАЩЕНИЯ 3-ЗАМЕЩЕННЫХ 6,6-ДИХЛОРГЕКСЕН-5-ОВЫХ КИСЛОТ

Л. А. СААКЯН, М. Т. ДАНГЯН и Г. М. ШАХНАЗАРЯН

Гомологизацией замещенных γ -хлор- и γ , γ -дихлораллилуксусных кислот по Аридт-Эйстерту получены этиловые эфиры 3-замещенных 6-хлор- и 6,6-дихлоргексен-5-овых кислот и соответствующие кислоты. Окислением последних надуксусной кислотой из 6,6-дихлоргексен-5-овой кислоты получена α -хлорадипиновая кислота, а из замещенных 6,6-дихлоргексен-5-овых кислот — смесь γ -замещенных α -хлорадипиновых кислот и соответствующего лактона (5-замещенная α -валеролактон- α -карбоновая кислота). При действии хлористого тионила и этилового спирта из смеси получены диэтиловые эфиры γ -замещенных α -хлорадипиновых кислот. Из 3-бутил-6-хлоргексен-5-овой кислоты окислением получена α -бутил- α -валеролактон- α -карбоновая кислота.

Доступность продуктов теломеризации этилена и четыреххлористого углерода открыла возможности синтеза, наряду с другими ценными соединениями, и α-хлоркарбоновых кислот.

Синтез а-хлоркарбоновых кислот был осуществлен посредством сопряженного присоединения хлора к гемдихлорвиниловым соединениям в среде концентрированной серной кислоты при 0—20°. Эта реакция была распространена на синтез а-хлордикарбоновых кислот и получены с хорошими выходами а-хлорадипиновая, а-хлорпимелиновая и а-хлорпробковая кислоты из 6,6-дихлоргексен-5-, 7,7-дихлоргептен-6-и 8,8-дихлороктен-7-овых кислот соответственно [1]. В дальнейшем этот метод неоднократно был использован для получения а-хлорглутаровой кислоты [2].

В последние годы нами разработан новый метод синтеза а-хлор- и а,а-дихлор- карбоновых кислот, основанный на перегруппировке дихлор- и трихлорвиниловых соединений в а-хлор- и а,а-дихлоркарбоновые кислоты при эпоксидировании надуксусной кислотой. Этим методом был синтезирован целый ряд а-хлордикарбоновых кислот и их С-замещенные в а'- и в'-положениях.

$$Cl_2C=CH(GH_2)_nCHRCHR'COOR''$$
 $\xrightarrow{CH_3COOOH}$ HOOCCH(CH_2) $_nCHRCHR'COOR''$ Cl $R=R'=H$, алкил. $R''=H$, C_2H_3 . $n=2$, 3, 4, 5, 6.

Далее, на большом количестве примеров было, показано, что замещенные γ -хлор- и γ , γ -дихлораллилуксусные кислоты (n=0, R=R''=H, R'=алкил, арил) при окислении превращаются в α -замещенные γ -бутиролактон- γ -карбоновые кислоты [3], причем доказано, что лактонизация протекает через стадию образования замещенных α -хлор-глутаровых кислот. Последние при перегонке или при перекристаллизации переходят в лактоны.

Таким образом, открываются широкие возможности для синтеза α-галогенокислот, окислением моно-, ди- и трихлорвиниловых соединений надкислотами [4]. Эти результаты побудили нас исследовать возможности получения новых соединений гомологического ряда α -хлордикарбоновых кислот. Для этой цели нам казалось весьма интересным привлечь к исследованию окисление дихлорвиниловых соединений с карбоксилом или карбэтоксилом в α -положении (α), исходя из того, что полученные С-замещенные α -хлорадипиновые кислоты (α) занимают промежуточное положение между замещенными α -хлорглутаровыми кислотами, которые в условиях реакции или при перегонке с хорошими выходами дают лактонокислоты, и С-замещенными α -хлорпимелиновыми кислотами, которые не превращаются в лактоны.

Кроме того, до настоящего времени нет способов получения не только С-замещенных а-хлорадипиновых кислот, но и замещенных 3-валеролактон-3-карбоновых кислот. Этого представляется возможным достигнуть путем гомологизации замещенных 7,7-дихлораллилуксусных кислот по реакции Арндта—Эйстерта [5] в 3-замещенные 6,6-дихлоргексен-5-овые кислоты или их этиловые эфиры, с последующим окислением надкислотами. На примере бутил-7-хлораллилуксусной кислоты показано, что замещенные 7-хлораллилуксусные кислоты с успехом можно применять для гомологизации. Выходы, как правило хорошие.

$$XCIC=CHCH_{2}CHRCOCI \xrightarrow{CH_{3}N_{3}}$$

$$[XCIC=CHCH_{2}CHRCOCHN_{2}] \xrightarrow{Ag_{3}O} XCIC=CHCH_{2}CHRCH_{2}COOH$$

$$\downarrow_{Ag_{3}O} \qquad \uparrow \qquad II$$

$$XCIC=CHCH_{2}CHRCH_{2}COOC_{2}H_{5}$$

$$III$$

когда X=H $R=C_4H_9$ X=CI R=H, C_3H_2 , C_4H_9 .

Во всех случаях кроме продуктов перегруппировки Вольфа получаются высококипящие продукты. В перегонной колбе остается 5— $10^{0}/_{0}$ по весу азот-содержащих продуктов, бурно разлагающихся при попытке перегонки.

Для обеспечения удовлетворительных выходов лучше получать II через III.

Продукты перегруппировки использованы для получения С-замещенных α-хлорадипиновых кислот, а из них α-аминоадипиновых кислот и их производных. Эта часть работы будет опубликована отдельно.

Окислением II надуксусной кислотой предполагали получить β -замещенные δ -валеролактон- δ -карбоновой кислоты, однако, вопреки ожиданиям была получена смесь γ -замещенных α -хлорадипиновых кислот с лактонокислотами.

Следует также заметить, что высказанное нами ранее предположение, что изомеризация обусловлена стремлением к образованию системы более устойчивой за счет размыкания кольца и миграции хлора остлется в силе [6].

Таким образом, в отличие от замещенных а-хлорглутаровых кислот [4], которые очень легко в условиях опыта, а также при перегонке превращаются в ү-лактонокислоты, ү-замещенные а-хлорадипиновые кислоты в аналогичных условиях лишь частично образуют д-лактоны. О том, что лактонизация происходит и в самой реакционной среде свидетельствует тот факт, что при этерификации в присутствии серной кислоты по данным ИК спектра получается смесь эфиров с д-лактонным кольцом. При образовании лактонного цикла при перегонке, легкость отщепления НС1 отчасти определяется строением соответствующей хлоркислоты и температурой перегонки. Так, замещенные а-хлорадипиновые кислоты образуют при перегонке больше 6-лактона, чем сама а-хлорадипиновая кислота. По данным анализа (% хлора) и ТСХ, установлено, что в смеси процентное соотношение 6-лактонокислоты и 7-пропил-а-хлорадипиновой кислоты составляет 55:45. Присутствие лактона в смеси подверждается также данными ИК поглощения. Однако нам не удалось перегонкой выделить оба продукта в индивидуальном виде, т. к. при этом выделяется НС1 и перегоняется смесь обоих веществ. При этерификации смеси разработанным нами методом [3] получают один продукт-диэтиловый эфир ү-замещенной а-хлорадипиновой кислоты.

Экспериментальная часть

Хлорангидриды замещенных ү-хлор- и ү,ү-дихлораллилуксусных кислот [3] получены действием на кислоты хлористым тионилом.

Хлорангидрид 5,5-дихлорпентен-4-овой кислоты, т. кип. 66— $68^{\circ}/2$ мм. Хлорангидрид 2-пропил-5,5-дихлорпентен-4-овой кислоты, т. кип. $83-85^{\circ}/3$ мм. Хлорангидрид 2-бутил-5,5-дихлорпентен-4-овой кислоты, т. кип. $88-90^{\circ}/2$ мм. Хлорангидрид 2-бутил-5-хлорпентен-4-овой кислоты, т. кип. $90-90^{\circ}/4$ мм.

Этиловые эфиры 3-замещенных 6-хлор- и 6,6-дихлоргенсен-5овых нислот. К эфирному раствору диазометана, приготовленному из 0,4 моля нитрозометилмочевины по методике [5], при охлаждении и перемешивании добавляют при 0° по каплям раствор 0,1 моля хлорангидрида замещенной 7-хлор- или 7,7-дихлораллилуксусной кислоты в 100 мл эфира. После добавления хлорангидрида смесь оставляют на 1 час при комнатной температуре. Удаляют растворитель без повышения температуры, неочищенный диазокетон растворяют в 300 мл абсолютного спирта, нагревают до 55—60° и при перемешивании по каплям добавляют суспензию 3 г катализатора (окиси серебра) в 60 мл абсолютного спирта. Затем при перемешивании кипятят 2 часа, добавляют около 0,5 г животного угля, снова кипятят и фильтруют в горячем состоянии. После отгонки спирта продукт перегоняют в вакууме. Данные об этиловых эфирах 3-замещенных 6-хлор- и 6,6-дихлоргексен-5-овых кислот приведены в таблице 1.

Таблица 1

CIC=CHCH₂CHRCH₂COOC₂H₅

x	R	Buxon, 0/0	Т. кип., °С/.и.и	n ²⁰ D	d ²⁰	найдено	вычис-	Найдено °/ ₀ Сі	Молекулярная формула	Вычислено °/0 СІ
CI	н	69,7	8488/3	1,4682	1,1773	49,84	50,07	33,1	C ₈ H ₁₁ Cl ₂ O ₂	33,6
CI	C ₃ H ₇	48	101-104/3	1,4630	1,1080	63,84	63,93	28,2	C11H18CI2O2	28,06
C1	C ₄ H,	67	105-107/3-4	1,4692	1,0790	68,63	68,53	26,58	C12H20Cl2O2	26,50
Н	C ₄ H _•	74,8	110—114/4	1,4580	0,9980	63,47	63,66	15,19	C ₁₀ H ₂₁ Cl ₂ O ₂	15,27

3-Замещенные 6-хлор- и 6,6-дихлоргексен-5-овые кислоты. К раствору 0,17 моля едкого натра в 50 мл водного спирта (1:1) добавляют 0,085 моля этилового эфира 3-замещенной 6-хлор- или 6,6-дихлоргексен-6-овой кислоты и при перемешивании нагревают на водяной бане 15—16 часов. После отгонки спирта, подкисляют, экстрагируют эфиром и после удаления эфира 3-замещенные 6-хлор- и 6,6-дихлоргексен-5-овые кислоты перегоняют в вакууме. Данные приведены в таблице 2.

Таблица 2

CIC=CHCH2CHRCH2COOH

x	R	Выход, 0/0	Т. кип., °С/мм	n _D ²⁰	d ₄ ²⁰	найдено	вычис-	Найдено °/0 С1	Молекулярная формула	Вычислено
CI	H*	62,8	108—110/2	1,4886	_			-	20-	-
CI	C ₃ H ₇	56	145-148/3	1,4832	1,1773	54,46	54,56	31,28	C,H,4Cl,O,	31,55
CI	C ₄ H ₉	82	156—159/3	1,4800	1,1422	59,42	59,18	30,08		29,70
Н	C ₄ H ₉	85	153-154/4	1,4680	1,0416	54,42	54,38	36,09		17,35
	- 10	!!!					1			

^{*} Литературные данные [1] т. кип. 139—140°/8 мм, n_D^{20} 1,4895, d_*^{20} 1,2967.

Xлорадилиновая кислота. Смесь 8 г 6,6-дихлоргексен-5-овой кислоты, 75 мл уксусного ангидрида и 20 мл пергидроля нагревают при $55^\circ-60^\circ$ до окончания реакции (по метилроту). Удаляют растворитель, а остаток перекристаллизовывают из хлороформа. Выход α -хлорадипиновой кислоты 4,5 г ($56^\circ/_0$), т. пл. 104° . Литературные данные $104-105^\circ$ [1].

 α -Хлорадипиновая кислота получена также по прописи [1] хлорированием 6,6-дихлоргексен-5-овой кислоты в среде концентрированиой серной кислоты. Из 10 г 6,6-дихлоргексен-5-овой кислоты получено 6 г (67%) α -хлорадипиновой кислоты. При перегонке α -хлорадипиновая кислота не превращается в α -валеролактон- α -карбоновую кислоту.

Этерификацией α -хлорадипиновой кислоты получен диэтиловый эфир [7]. Выход $76^{\circ}/_{0}$, т. кип. $98-100^{\circ}/2$ мм, $n_{\rm D}^{20}$ 1,4376, $d_{\rm A}^{20}$ 1,0953. М $R_{\rm D}$ найдено 56,56, вычислено 56,57. Найдено $^{\circ}/_{0}$: CI 14,8. $C_{10}H_{17}CIO_{\rm A}$. Вычислено $^{\circ}/_{0}$: CI 14,4.

Окисление 3-пропил-6,6-дихлоргексен-5-овой кислоты надуксусной кислотой. Опыт проведен аналогично предыдущему. Взято 12 г 3-пропил-6,6-дихлоргексен-5-овой кислоты, 100 мл уксусного ангидрида и 28 мл $30^{\circ}/_{\circ}$ -ной перекиси водорода. Реакция продолжалась 38 часов (по метилроту). После отгонки уксусной кислоты остаток перегоняют в вакууме и собирают фракцию с т. кип. $190-194^{\circ}/3$ мм. Выход 8,5 г. Найдено $^{\circ}/_{\circ}$: С1 11,05. Для $_{\circ}$ -пропил- $_{\circ}$ -хлорадипиновой кислоты ($C_{\circ}H_{18}CIO_{4}$) вычислено $^{\circ}/_{\circ}$: С1 15,95. По данным ТСХ смесь состоит из двух веществ, процентное соотношение которых составляет 55:45. В ИК спектре имеется полоса поглощения, характерная для валентного колебания С=О в $_{\circ}$ -лактонах 1738 см $_{\circ}$ -1, С=О в кислотах, 1712 см $_{\circ}$ -1, широкая область поглощения 1050—1290 см $_{\circ}$ -1 С $_{\circ}$ -О С группировки.

Этерификацией смеси при помощи хлористого тионила по прописи [5] получен диэтиловый эфир γ -пропил- α -хлорадипиновой кислоты. Выход $56^{\circ}/_{0}$, т. кип. $122-124^{\circ}/_{3}$ мм, n_{D}^{20} 1,4495; d_{D}^{20} 1,0613. MR_{D} найдено 70,45, вычислено 70,41. Найдено $0/_{0}$: C1 12,85. $C_{13}H_{23}ClO_{4}$. Вычислено $0/_{0}$: C1 12,71.

Окисление 3-бутил-6,6-дихлоргексен-5-овой кислоты надуксусной кислотой. Опыт проведен аналогично предыдущему. Из 8,6 г 3-бутил-6,6-дихлоргексен-5-овой кислоты, 17 мл пергидрола и 65 мл уксусного ангидрида получено 6,8 г продукта, т. кип. $190-195^{\circ}/2$ мм. Найдено $^{\circ}/_{\circ}$: С1 7,53. Для γ -бутил- α -хлорадипиновой кислоты $(C_{10}H_{17}ClO_4)$ вычислено $^{\circ}/_{\circ}$: С1 15,01.

По данным ТСХ продукт состоит из двух веществ с процентным соотношением 44:56. В ИК спектре имеется поглощение при 1738 см⁻¹ характерное для С=О в 8-лактонах, 1200—1260 см⁻¹ характерное для С—О—С. В спектре отсутствуют полоса поглощения —СН=ССІ₂ и ОН группы в спиртах.

При этерификации по описанному нами ранее методу получен только диэтиловый эфир γ -бутил- α -хлорадипиновой кислоты. Выход $62^{\circ}/_{0}$, т. кип. $140^{\circ}/_{5}$ мм, n_{D}° 1,4526, d_{D}° 1,0547. М R_{D} найдено 74,90, вычислено 75,02. Найдено $6^{\circ}/_{0}$: C1 12,33. $C_{14}H_{25}CIO_{4}$. Вычислено $6^{\circ}/_{0}$: C! 12,14.

 β -Бутил- δ -валеролактон- δ -карбоновая кислота. Опыт проведен аналогично предыдущему. Из 7,7 г 3-бутил- δ -хлоргексен- δ -овой кислоты, 16 мл пергидрола и 45 мл уксусного ангидрида получено 6 г ($80^{\circ}/_{\circ}$) β -бутил- δ -вялеролактон- δ -карбоновой кислоты с т. кип. 176—180°/3 мм, π_{\circ}^{20} 1,4570; d_{\circ}^{20} 1,1424; MRD найдено 49,28, вычислено 49,37. Найдено σ_{\circ}^{1} С 59,82; Н 8,05. σ_{\circ}^{1} Вычислено σ_{\circ}^{1} С 60,00, Н 8,00.

Ереванский государственный университет

Поступило 19 VIII 1968

ՄՈԼԵԿՈՒԼՑԱՐ ՎԵՐԱԽՄԲԱՎՈՐՈՒՄՆԵՐ

VII. 3_ՏԵՂԱԿԱԼՎԱԾ 6_ՔԼՈՐ_ ԵՎ G,6_ԴԻՔԼՈՐՀԵՔՍԱՆ_5_ԹԹՈՒՆԵՐԻ ՍԻՆԹԵԶԸ ԵՎ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

1. H. UUZU48UL, U. S. AULLBUL BY A. U. TUZLUGUPSUL

Udhnhnid

ЛИТЕРАТУРА

- 1. А. Н. Несмеянов, В. Н. Кост, Р. Х. Фрейдлина, ДАН СССР, 103, 1029 (1955).
- 2. Японск. пат., № 2460 (1964); РЖХим., 1966, 24Н27П; пат. США, № 3256325 (1966); РЖХим., 1967, 17Н66П.
- 3. М. Т. Дангян, Г. М. Шахназарян, ЖОХ, 31, 1643 (1961); Г. М. Шахназарян, Л. А. Саакян, А. А. Ахназарян, М. Т. Дангян, ЖОрХ, 2, 1793 (1966); ЖОрХ, 4, 1588 (1968).
- 4. Г. М. Шахназарян, В. А. Гарибян, М. Т. Дангян, Арм. хим. ж., 21, 963 (1968).
- Б. Эйстерт, Новые методы препаративной органической химии, ИЛ, Москва, 1950, стр. 91—138.
- 6. В. А. Гарибян, Г. М. Шахназарян, Л. А. Саакян, Л. А. Восканян, М. Т. Дангян, Арм. хим. ж., 19, 812 (1966).
- 7. E. Schwenk, D. Papa, J. Am. Chem. Soc., 70, 3626 (1948).