2 Ц 3 4 Ц 4 Ц 5 Р Р Г Р Ц 4 Ц 5 Ц Г U Ц 4 Р Р АРМЯНСКИЯ ХИМИЧЕСКИЯ ЖУРНАЛ

XX, Nº 7, 1967

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 541.123.3+546.32+546.33+546.34

ФИЗИКО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ СИСТЕМ, СОДЕРЖАЩИХ Na₃AIF₆, K₃AIF₆ и Li₃AIF₆

V. ДИАГРАММА ПЛАВКОСТИ СИСТЕМЫ Na2AIF -- K2AIF -- L12AIF

Г. Г. БАБАЯН, Р. С. ЕДОЯН и М. Г. МАНВЕЛЯН

Впервые методом термического и рентгеновского анализов исследована система Na₃AIF₆—K₃AIF₆—Li₃AIF₆; построена диаграмма плавкости, которая содержит:

а) поля первичной кристаллизации, отвечающей выделению следующих фаз Na₃AlF₆; 2Na₃AlF₆·K₃AlF₆; 5Na₃AlF₆·SK₃AlF₆; Na₃AlF₆·K₃AlF₆; 3Na₃AlF₆·5K₃AlF₆; Na₃AlF₆·2K₃AlF₆; 2Na₃AlF₆·5K₃AlF₆; 2K₃AlF₆·Li₃AlF₆; 5K₃AlF₆·6Li₂AlF₆; 3K₃AlF₆· ·5Li₃AlF₆ и Li₃AlF₆;

б) двадцать линий моновариантного равновесия;

в) нонвариантные точки:

E — тройная эвтектика, соответствующая совместной кристаллизации фаз Na₃AlF₆, Ll₃AlF₆ и 3K₃AlF₆.5Ll₃AlF₆, при температуре 636°С, состава 5⁰/₀ мол. Na₃AlF₆, 77,0⁰/₀ мол. Ll₃AlF₆ и 18,0⁰/₀ мол. K₃AlF₆.

Одиннацать двойных эвтектик и девять переходных точек;

г) наинизшей температурой плавления обладает тройная эвтектика (636°С).

На основании полученных данных по двойным системам Na₃AlF₆—K₃AlF₈ [1], K₃AlF₆—Li₃AlF₆ [2], Na₃AlF₆—Li₃AlF₆ [3] и диаграмм плавкости 10 разрезов [4], лежащих на тройной системе, построена диаграмма плавкости системы Na₃AlF₆—K₃AlF₆—Li₃AlF₆. Для изучения этой системы применен метод термического и рентгенографического анализов.

Как уже было показано, в бинарной системе Na₃AlF₆—K₃AlF₆ образуются шесть химических соединений, а в бинарной системе K₃AlF₆—Ll₃AlF₆— три химических соединения. Бинарная система Na₃AlF₆—Ll₃AlF₆ представляет собой систему с простой эвтектикой.

Диаграмма плавкости системы Na₃AiF₆-K₃AiF₆-Li₃AiF₆ (рис. 1) содержит:

а) Поле первичной кристаллизации

Фаза Na₃AlF₆. Поле фазы Na₃AlF₆ занимает большую часть концентрационного треугольника, оно ограничено эвтектическими линиями, отвечающими совместной кристаллизации: Na₃AlF₆ и 2Na₃AlF₆·K₃AlF₆; Na₃AlF₆ и 5Na₃AlF₆·3K₃AlF₆; Na₃AlF₆ и Na₃AlF₆. K_3 AlF₆; Na₃AlF₆ и 5Na₃AlF₆·3K₃AlF₆; Na₃AlF₆ и Na₃AlF₆. K_3 AlF₆; Na₃AlF₆ и 3Na₃AlF₆·5K₃AlF₆; Na₃AlF₆ и Na₃AlF₆·2K₃AlF₆; Na₃AlF₆ и Na₃AlF₆, Na₃AlF₆ и Na₃AlF₆, Na₃

3K₃AlF₆·5Li₃AlF₆ и, наконец Na₃AlF₆ с Li₃AlF₆. Поле фазы Na₃AlF₆ характеризуется наличием сильно выраженной складки синклинального типа линий изотерм.

Поле фазы 2Na₃AlF₆·K₃AlF₆ ограничено линиями совместной кристаллизации: Na₃AlF₆ и 2Na₃AlF₆·K₃AlF₆, 2Na₃AlF₆·K₃AlF₆ и 5Na₃AlF₆·SK₃AlF₆.

Рис. 1. Диаграмма плавкости системы Na₃AlF₆-K₃AlF₆-Li₃AlF₆.

Поле фазы $5Na_{3}AlF_{6} \cdot 3K_{3}AlF_{6}$ ограничено эвтектическими линиями кристаллизации. $Na_{3}AlF_{6}$ и $5Na_{3}AlF_{6} \cdot 3K_{3}AlF_{6}$, $5Na_{3}AlF_{6} \cdot 3K_{3}AlF_{6}$ и $2Na_{3}AlF_{6} \cdot K_{3}AlF_{6}$, $5Na_{3}AlF_{6} \cdot 3K_{3}AlF_{6}$ и $Na_{3}AlF_{6} \cdot K_{3}AlF_{6}$.

Поле фазы Na₃AlF₆·K₃AlF₆ ограничено эвтектическими линиями совместной кристаллизации: Na₃AlF₆·K₃AlF₆ и $5Na_3AlF_6$ ·3K₃AlF₆, Na₃AlF₆·K₃AlF₆ и $3Na_3AlF_6$ ·SK₃AlF₆, Na₃AlF₆·K₃AlF₆.

Поле фазы $3Na_3AIF_6 \cdot 5K_3AIF_6$ ограничено эвтектическими линиями совместной кристаллизации: Na_3AIF_6 и $3Na_3AIF_6 \cdot 5K_3AIF_6$, $3Na_3AIF_6 \cdot 5K_3AIF_6$ и $Na_3AIF_6 \cdot K_3AIF_6$, $3Na_3AIF_6 \cdot 5K_3AIF_6$ и $Na_3AIF_6 \cdot K_3AIF_6$.

Поле фазы Na₃AlF₆·2K₃AlF₆ ограничено эвтектическими линиями совместной кристаллизации: Na₃AlF₆ и Na₃AlF₆·2K₃AlF₆, Na₃AlF₆· ·2K₃AlF₆ и 3Na₃AlF₆·5K₃AlF₆, Na₃AlF₆·2K₃AlF₆ и 2Na₃AlF₆·5K₃AlF₆, переходной линией, вдоль которой протекает реакция

 $Na_3AIF_6 \cdot 2K_3AIF_6 + \mathcal{H}_1 = 2Na_3AIF_6 \cdot 5K_3AIF_6 + \mathcal{H}_2$.

Поле фазы $2Na_3AlF_{s} \cdot 5K_3AlF_{s}$ ограничено переходной линией: $Na_3AlF_{s} \cdot 2K_3AlF_{s} + \mathcal{K}_3 \stackrel{\sim}{=} 2Na_3AlF_{s} \cdot 5K_3AlF_{s} + \mathcal{K}_2$,

эвтектическими линиями, отвечающими совместной кристаллизации: Na₃AIF₆ и 2Na₃AIF₆·5K₃AIF₆, 2Na₃AIF₆·5K₃AIF₆ и K₃AIF₆, 2Na₃AIF₆·5K₃AIF₆ и K₃AIF₆, 2Na₃AIF₆· $^{\circ}$ SK₃AIF₆ и 2K₃AIF₆· $^{\circ}$ Li₃AIF₆, 2Na₃AIF₆· $^{\circ}$ SK₃AIF₆ и Na₃AIF₆· $^{\circ}$ CK₃AIF₆; и наконец 2Na₃AIF₆· $^{\circ}$ SK₃AIF₆ и 5K₃AIF₆ и 5K₃AIF₆.

Поле фазы K₃AlF₆ ограничено эвтектическими линиями отвечающими совместной кристаллизации K₃AlF₆ и 2Na₃AlF₆·5K₃AlF₆, K₃AlF₆ и 2K₃AlF₆·Li₃AlF₆.

Поле фазы $2K_3AIF_6 \cdot Li_3AIF_6$ ограничено эвтектическими линиями, отвечающими совместной кристаллизации $2K_3AIF_6 \cdot Li_3AIF_6$ и K_3AIF_6 , $2K_3AIF_6 \cdot Li_3AIF_6 \cdot 2Na_3AIF_6 \cdot 5K_3AIF_6$, $2K_3AIF_6 \cdot Li_3AIF_6$ и $5K_3AIF_6 \cdot 6Li_3AIF_6$.

Поле фазы $5K_3A1F_6 \cdot 6Li_3A1F_6$ ограничено эвтектическими линиями, отвечающими совместной кристаллизации $5K_3A1F_6 \cdot 6Li_3A1F_6$ и $2K_3A1F_6 \cdot 6Li_3A1F_6$. $\cdot Li_3A1F_6$, $5K_3A1F_6 \cdot 6Li_3A1F_6$ и $3K_3A1F_6 \cdot 5Li_3A1F_6$, $5K_3A1F_6 \cdot 6Li_3A1F_6$ и Na_3A1F_6 .

Поле фазы $3K_3AIF_6 \cdot 5Li_3AIF_6$ ограничено эвтектическими линиями, отвечающими совместной кристаллизации $3K_3AIF_6 \cdot 5Li_3AIF_6$ и $5K_3AIF_6 \cdot 6Li_3AIF_6$, $3K_3AIF_6 \cdot 5Li_3AIF_6$ и Li_3AIF_6 , $3K_3AIF_6 \cdot 5Li_3AIF_6$.

Поле фазы Li₃AlF₆ ограничено эвтектическими линиями, отвечающими совместной кристаллизации: Li₃AlF₆ и Na₃AlF₆, Li₃AlF₆ и 3K₃AlF₆·5Li₃AlF₆.

б) Линии моновариантного равновесия

На диаграмме плавкости системы Na₃AlF₆—K₃AlF₆—Li₃AlF₆ имеется 20 линий моновариантного равновесия:

 E_1P_1 — линия совместной кристаллизации Na₃AlF₆ и 2Na₃AlF₆ ·K₃AlF₆ ·K₃A

лизации Қ₃АІҒ₆ и 2Қ₃АІҒ₆ · Li₃АІҒ₆, $P_{2}P_{8}$ — линия совместной кристаллизации 2Na₃AlF₆ · 5Қ₃АІҒ₆ и 2Қ₃AlF₆ · Li₃AlF₆, $E_{8}P_{8}$ — линия совместной кристаллизации 2Ka₃AlF₆ · Li₃AlF₆ · 6Li₃AlF₆, $P_{8}P_{8}$ — линия совместной кристаллизации 2Na₃AlF₆ · 5K₃AlF₆ · 6Li₃AlF₆, $P_{8}P_{8}$ — линия совместной кристаллизации 2Na₃AlF₆ · 5K₃AlF₆ и 5K₃AlF₆ · 6Li₃AlF₆, $P_{8}P_{8}$ — линия совместной кристаллизации 2Na₃AlF₈ · 5K₃AlF₆ · 6Li₃AlF₆, $P_{8}P_{8}$ — линия совместной кристаллизации Na₃AlF₈ и 5K₃AlF₆ · 6Li₃AlF₆, $E_{9}P_{9}$ — линия совместной кристаллизации SK₃AlF₆ · 6Li₃AFI₆ и 3K₃AlF₆ · 5Li₃AlF₆, $P_{9}E$ — линия совместной кристаллизации Na₃AlF₆ и 3K₃AlF₈ · 5Li₃AlF₆, $E_{11}E$ — линия совместной кристаллизации Na₃AlF₆ и Li₃AlF₆, $E_{10}E$ — линия совместной кристаллизации Na₃AlF₆ и Li₃AlF₆, $E_{10}E$ — линия совместной кристаллизации Na₃AlF₆ и SK₃AlF₆ · 5Li₃AlF₆, $E_{11}E$ — линия совместной кристаллизации Na₃AlF₆ и SK₃AlF₆.

в) Нонвариантные точки

Е — тройная эвтектика, соответствующая совместной кристаллизации фаз Na,AIF, Li,AIF, и 3K,AIF, 5Ll,AF, при температуре 636°С; ей отвечает состав 5% мол. Na,AIF, 77,0% мол. Li,AIF, и 18,0% мол. К_аАІF_в. Е₁ – двойная эвтектика, соответствующая совместной кристаллизации фаз Na₃AIF, и 2Na₃AIF, К₃AIF, при температуре 832°. E₂ — двойная эвтектика, соответствующая совместной кристаллизации фаз 2Na,AIF, K,AIF, и 5Na,AIF, 3K,AIF, при температуре 840°. P. переходная точка, отвечающая реакции 2Na₃AlF_s·K₃AlF_s + Ж₁ ≓ ≓ 5Na₃AlF₆·3K₃AlF₆ + Ж₂ состава: 53,0% мол. Na₃AlF₆, 21,0% мол. Li₂AlF₈ и 26,0% мол. K₃AlF₈. Е₃ — двойная эвтектика, отвечающая совместной кристаллизации 5Na₃Al₆·3K₃AlF₆ и Na₃AlF₆·K₃AlF₆ при температуре 840°. Р₂ — переходная точка, отвечающая реакции 5Na₂AlF₈·3K₂AlF₈ + $M_1 \rightleftharpoons$ Na₃AlF₈·K₃AlF₈ + M_3 состава: 44,0% мол. Na₃AlF₆, 25,5⁰/₀ мол. Li₃AlF₆ и 30,5⁰/₀ мол. K₃AlF₆. E₄ — двойная эвтектика, отвечающая совместной кристаллизации Na,AlF, K,AlF, и ЗNa₃AlF₆·5K₃AlF₆, при температуре 832°. Р₃ - переходная точка, отреакции Na₃AlF₆·K₃AlF₆ + $X_1 \equiv 3Na_3AlF_6 \cdot 5K_3AlF_6 + X_2$ вечающая состава: 32,0% мол. Na₃AIF₆, 28,0% мол. Li₃AIF₆ и 40% мол. K₃AIF₆. E_в — двойная эвтектика, отвечающая совместной кристаллизации ЗNa₃AlF₆ · 5K₃AlF₆ и Na₃AlF₆ · 2K₃AlF₆, при температуре 830°. Р. – переходная точка, соответствующая реакции: 3Na₃AlF_a·5K₃AlF_a + Ж₁ ≓ ≓ Na₃AlF₆·2K₃AlF₆ + Ж₂. Р – переходная точка, соответствующая реакции: Na₃AlF₆·2K₃AlF₆ + $\mathcal{H}_1 \rightleftharpoons 2Na_3AlF_6 \cdot 5K_3AlF_6 + \mathcal{H}_2$ состава: 33,0% мол. Na₃AlF₆ и 67,0% мол. K₃AlF₆. P₅ — переходная точка, соответствующая реакции: Na₃AlF₆·2K₃AlF₆+Ж₁ ≈ 2Na₃AlF₆·5K₃AlF₆+ + Ж_а состава: 26,0% мол. Na₃AlF_в, 34,0% мол. Li₃AlF_в и 40,0% мол. КаАІF. Е. - двойная эвтектика, отвечающая совместной кристаллизации 2N₃AlF₆·5K₂AlF₆ и K₃AlF₆ при температуре 792°. Р₆ - переходная точка, соответствующая реакции: 2Na₃A1F₆·5K₃A1F₆ + Ж₁ ≓ ≓ 5K₂AlF₅·6Li₃AlF₆ + Ж₂ ,состава: 3,0% мол. Na₃AlF₆, 54,0% мол. Li₂AlF₆, 43,0% мол. K₂AlF₆. P₇ - переходная точка, соответствующая реакции: $K_{a}AIF_{a} + M_{1} \neq 2K_{3}AIF_{a} \cdot Li_{3}AIF_{a} + M_{\circ}$ состава: 10,0% мол. Na₃AlF₆, 30,0% мол. Li₃AlF₆, 60,0% мол. K₃AlF₆. E₇ - двойная эвтектика, отвечающая совместной кристаллизации K₃AlF₆ и 2K₃AlF₆. -Li₂AlF₆ при температуре 760°С и состава: 71,0% мол. K₃AlF₆ и

Рис. 2. Рентгенограммы - химических, соединений: a) Na₃AlF₆; б) K₃AlF₆, в) Li₃AlF₆, г) 2Na₃AlF₆·K₃AlF₆, д) 5Na₂AlF₆·3K₃AlF₆, е) Na₃AlF₆·K₃AlF₆,

Рис. 2. Рентгенограммы химических соединений: ж) $3Na_3AIF_6 \cdot 5K_3AIF_6$, и) $2Na_3AIF_6 \cdot 5K_3AIF_6$, к) $2K_2AIF_6 \cdot LI_6AIF_6$, л) $5K_3AIF_6 \cdot 6LI_3AIF_6$, м) $3K_3AIF_6 \cdot 5LI_3AIF_6$.

29,0% мол. Li₃AlF₆. P_8 — переходная точка, соответствующая реакции; 2K₃AlF₆·Li₃AlF₆ + $M_1 = 5K_3AlF_6 \cdot 6Li_3AlF_8$ состава: 3% мол. Na₃AlF₆ 49% мол. Li₃AlF₆ и 52% мол. K₃AlF₆. E_8 — двойная эвтектика, отвечающая совместной кристаллизации 2K₃AlF₆·Li₃AlF₆ и 5K₃AlF₆·6Li₃AlF₆, при температуре 700°. P_9 — переходная точка, соответствующая реакции: 5K₃AlF₆·Li₃AlF₆ + $M_1 = 3K_3AlF_6 \cdot 5Li_3AlF_6 + M_2$ состава: 2,0% мол. Na₈AlF₆, 58,5% мол. Li₂AlF₆ и 39,5% мол. K₃AlF₆. E_9 — двойная эвтектика, отвечающая совместной кристаллизации 5K₃AlF₆·6Li₃AlF₆ и 3K₃AlF₆·5Li₃AlF₆ при температуре 690°. E_{10} — двойная эвтектика, отвечающая совместной кристаллизации Li₃AlF₆ и 3K₃AlF₅·5Li₃AlF₆ при температуре 640°. E_{11} — двойная эвтектика, отвечающая совместной кристаллизации Li₃AlF₆ и 3K₃AlF₅·5Li₃AlF₆ при температуре 640°. E_{11} — двойная эвтектика, отвечающая совместной кристаллизации Na₃AlF₆ и Li₃AlF₆ при температуре 678°C.

Для подтверждения, образующихся фаз было проведено рентгенографическое исследование химических соединений, полученных в системе Na₃AlF₈—K₃AlF₈—Li₂AlF₈ (рис. 2).

Ереванский научно-исследовательский институт химии

Поступило 24 V 1966

Na₃AIF₆, K₃AIF₆ և Li₃AIF₆ **ጣԱՐՈՒՆԱԿՈՂ ՍԻՍՏԵ**ՄՆԵՐԻ ՖԻԶԻԿԱ-ՔԻՄԻԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆՆԵՐ

V. Na3AIF_-K3AIF_-LI3AIF, UPUSBUP 24LUUL APUAPUUC

Հ. Գ. ԲԱԲԱՑԱՆ, Ռ. Ս. ԵԴՈՅԱՆ և Մ. Դ. ՄԱՆՎԵԼՑԱՆ

Ամփոփում

Թերմիկ և ռենտգենագրաֆիկ անալիզների մեթեոդով ուսումնասիրել ենջ Na₃AlF₆—K₃AlF₆—Li₃AlF₆ սիստեմը և կառուցել նրա հալման դիագրրամը, որը պարունակում է՝

ω) Na₃AlF₆; 2Na₃AlF₆·K₃AlF₆; 5Na₃AlF₆·3K₃AlF₆; Na₃AlF₆·K₃AlF₆; 3Na₃AlF₆·5K₃AlF₆; Na₃AlF₆·2K₃AlF₆; 2Na₃AlF₆·5K₃AlF₆; 2K₃AlF₆·Li₃AlF₆; 5K₃AlF₆·6Li₃AlF₆; 3K₃AlF₆·5Li₃AlF₆ ω Li₃AlF₆ ω hugar for the half of hard the half of hard the ha

p) միավարիանտ հավասարակչաության 20 դծեր,

վ) նոնվարիանտ հավասարակշռության մեկ եռլակ էվտեկտիկ կետ, որին համապատասիանում է 636°,

գ) նանվարիանտ հավասարակշտության 11 երկէվտեկտիկ կետեր,

դ) նոնվարիանտ հավասարակշռության 9 անցման կետեր։

ЛИТЕРАТУРА

1. Р. С. Едоян, М. Г. Манвелян, Г. Г. Бабаян, Изв. АН АрмССР, ХН, 8, 10 (1965). 2. Р. С. Едоян, Г. Г. Бабаян, М. Г. Манвелян, Арм. хим. ж., 19, 408 (1966). 3. Г. Г. Бабаян, Р. С. Едоян, М. Г. Манвелян, Арм. хим. ж., 20, 20 (1967).